
CS533 FINAL PROJECT
PRESENTED BY: THE APPVENGERS

Project Analysis

Software Development Life Cycle

(SDLC)

E-commerce

Clothing App

Flowchart

Recently Viewed

PROJECT ANALYSIS

FUNCTIONAL REQUIREMENTS

User Authentication

• Users must be able to sign up
and log in.

• Authentication should use
email & password.

• Users should be able to log
out.

Product Listing & Search

• Users should see a list of
available products.

• Each product should display
name, image, price, and
description.

• Users should be able to search
for products by scrolling.

PROJECT ANALYSIS

FUNCTIONAL REQUIREMENTS

Product Details

• Clicking on a product should

take the user to a Product Detail

Page.

• The detail page should show
image, price, description, and an

option to increase and decrease

quantity, order, or add to cart.

About Page

• The app should have an “About”
page to display general app
information.

PROJECT ANALYSIS

FUNCTIONAL REQUIREMENTS

Firebase and SQLite

• Cart items and recently viewed items

will be stored in an SQLite database.

• Orders and login/authorization

information will be stored in a

Firebase Firestore for persistence

across sessions/devices.

• Firestore will store and sync data in

real time.

Shopping Cart

• Users should be able to add products
to the cart.

• Users should be able to view and
remove cart items.

• Users should be able to increase or
decrease the quantity of items in the
cart.

• Users should be able to order products
listed in the cart.

Performance

• The app should load
products within 2 seconds.

• The app should be

responsive of different

screen sizes.

Usability

• The UI should be easy to
navigate.

• Buttons and actions
should be intuitive.

PROJECT ANALYSIS
FUNCTIONAL REQUIREMENTS

SDLC - PROJECT ANALYSIS

NON-FUNCTIONAL REQUIREMENTS

Scalability

• The app should handle many

users and products without

crashing.

Maintainability

• The code should be modular
and well-documented.

• Future updates should be
easy to implement.

• Resources should be used in
place of hard-coded text and
colors.

SDLC - DESIGN

Activities

• MainActivity – Displays the product
list

• DetailActivity – Shows product details

• OrderActivity – Displays placed orders

• RecentlyViewedActivity – Shows
recently viewed products

• CartActivity – Displays products
placed in the cart

Database

• Use SQLite (DbHelper.java) for storing
items in the cart

• Design a new "Recently Viewed" table
to store clicked products

• Implement Google Firebase for
storing placed orders and user
information

SDLC - IMPLEMENTATION

Product List

• Used RecyclerView in
MainActivity to display
products from
products.json

• MainAdapter.java binds
data to the UI

Recently Viewed Activity

• Implemented a button-
based navigation to a new
RecentlyViewedActivity

• Used SQLite to store and
retrieve recently viewed
products

SDLC - IMPLEMENTATION

Database Integration

•Extended DbHelper.java to support Recently
Viewed Products

•Added necessary methods to store and retrieve
product data with json

SDLC – TESTING AND DEBUGGING

Key Fixes and Improvements

• Fixed missing UI elements (RecyclerView & Button
placement)

• Debugged issue where Recently Viewed list was not
updating

• Improved layout for better UI/UX

SDLC – DEPLOYMENT AND MAINTENANCE

GitHub Integration

• Used GitHub Desktop to
commit and push changes

• Resolved issues with
syncing local commits to
the GitHub repository

Future Enhancements

• Improve UI/UX for a more
modern design

• Add filtering & sorting for
products

ALTERNATIVE

SOLUTION

ANALYSIS

PRODUCT DATA SOURCE

Current Solution (JSON
File)

• Does not impact
performance speed

• Cannot change products
without updating the app

Alternative Solution
(Remote API or Firestore)

• More complex

• Can dynamically change
product list

CART & RECENTLY VIEWED ITEMS

Current Solution (SQLite)

• Simple – no required
dependencies

• Error handling is harder

Alternative Solution (Room
Database)

• Creates an abstract layer over
SQLite

• Verifies queries at compile time

• Can respond to live changes

• Larger learning curve

ORDERS AND AUTHENTICATION

Current Solution (Firebase
Firestore)

• Less expensive/less
flexible

• Real time data sync

• Only NoSQL

Alternative Solution
(Amazon Web Services)

• More expensive/more
complex/more flexibility

• Does not have real-time
data sync

• Supports SQL and NoSQL

PROJECT

DESIGN

SHOPPING

APP

PROJECT

CONTRIBUTIONS

Brenda Nahlik

OVERVIEW

My contribution improved the mobile
shopping app by:

Adding a “Recently Viewed” feature
using SQLite

Creating a dedicated activity for
recently viewed products

Adding an About page fragment from
the menu

Integrating RecyclerViews and
persistent storage

Save

• Objective: Save clicked products to the added recently_viewed
table.

Insert
• On product click, insert product into 'recently_viewed' table

Open
• Then open DetailActivity with product data via Intent

FEATURE 1:

RECENTLY SAVED ITEMS

INSERT PRODUCT INTO RECENTLY VIEWED

TABLE

RETRIEVE RECENTLY VIEWED PRODUCTS FROM TABLE

VIEWING

RECENTLY

VIEWED

PRODUCTS

Objective: Show list of recently
viewed items.

Uses RecyclerView to show
items

Uses RecentlyViewedAdapter to
bind product data retrieved from
SQLite

Loads data from
DbHelper.getRecentlyViewed()

VIEW

RECENTLY

VIEWED

ITEMS

VIEWING

RECENTLY

VIEWED

PRODUCTS

VIEW

RECENTLY

VIEWED

ITEMS

WITH

RECYCLERVIEW

VIEWING

RECENTLY

VIEWED

PRODUCTS

DISPLAY

RECENTLY

VIEWED

ITEMS

FEATURE 4:

“ABOUT”

FRAGMENT

Objective: Add informational 'About' page.

Files:

AboutFragment.java

fragment_about.xml

MainActivity.java

Selected via menu item

→ triggers loadFragment(new AboutFragment())

FEATURE 2:

"ABOUT"

FRAGMENT

“ABOUT”

SECTION

LAYOUT

DEMONSTRAT

ION

DEMONSTRATION

9/5/2025

9/5/2025
 35

9/5/2025
 36

SHOPPING

APP

PROJECT

CONTRIBUTIONS

Morgan Snider

ADDING JSON

FUNCTIONALITY

A JSON file is used to load the

product information as shown

here

ADDING JSON

FUNCTIONALITY

A Product model creates

objects from the JSON input

ADDING JSON

FUNCTIONALITY

In the MainActivity,

product.json is read and

create a list of Product

objects which are then

translated into the

MainModel objects of the

base code and displayed in

the recyclerviewer

ERROR FIXING

Fixed an error where the

quantity and price of an

order was displaying

incorrectly

(Item of price $5, quantity

of 3 was displaying as $20

total instead of $15)

SHOPPING
APP
PROJECT
CONTRIBUTIONS

Samikshya Adhikari

9/5/2025

42

BRANDING AND LOGIN PAGE DESIGN

• Created a custom Login Page to establish

the app’s first impression.

• Branded the app as CTRL+STYLE, setting

the theme of the project.

• Designed and applied a new logo and

modernized color palette.

• Updated the AppBar to better match the

overall background and brand aesthetic.

9/5/2025

43

SPLASH SCREEN AND THEME UPDATES

• Developed a new Splash Screen featuring the

CTRL+STYLE logo and green background.

• Replaced the earlier yellow theme with a

cohesive green-based color theme for visual

harmony.

• Enhanced user experience with smoother app

loading animations.

9/5/2025

44

THEME

UPDATE
• Before • After

9/5/2025
 45

FIREBASE USER DATA INTEGRATION

• Fetched registered user details

(name, email, phone) from Firestore.

• Displayed user information in a

structured User List inside the app.

• Enabled real-time updates whenever

a user signed up or edited their

details.

9/5/2025

46

USER ANALYTICS

DASHBOARD

Built a Bar Chart showing simulated

6-month registration trends.

Developed a Pie Chart based on real

Firestore data to visualize email

domain distribution.

Enabled dynamic, visual insights

directly from database queries.

9/5/2025

47

FINAL INTEGRATION AND PROJECT COMPLETION

• Merged all UI, functional, and

visualization updates into the Main

branch.

• Coordinated last-minute

improvements without breaking

existing features.

• Contributed to delivering a fully

functional, branded, and polished

final shopping app.

9/5/2025

48

SHOPPING

APP

PROJECT

CONTRIBUTIONS

Kyle Schwartz

OVERVIEW

9/5/2025

50

Upgraded project to latest Gradle and Java technologies supported by Firebase.

Implemented Google Firebase for storing user and order information

Developed a cart activity using SQLLite and a checkout feature that sends cart data from SQLLite to Firebase.
Also added an “Add to Cart” icon in the detail activity, and a cart icon in the menu bar.

Implemented more advanced authentication with Google Firebase Authenticate

Finalized “Order Now” and “Checkout” buttons to send place an order by sending user and order information to
Firebase.

Re-coded the orders activity to retrieve order data from Firebase.

UPGRADES TO PROJECT ARCHITECTURE
(REQUIRED TO USE FIREBASE APIS)

• This was the most difficult part of the project for me because it required major changes to the

Gradle code, and a good understanding of how each component in the app worked.

• Firebase required the project to use a more modern build setup. To resolve several errors, I

made the following upgrades to the original, somewhat outdated, template.

o Upgraded Gradle compile SDK from 32 to 35.

o Modified existing build files to use the more modern Kotlin programming language instead of

Groovy.

o Upgraded the Java version from 1.8 to 11.

o Re-coded any code that threw depreciation errors.

o Began to use Android Studio Meerkat for Development.

9/5/2025
 51

Store

• Objective: Store user an order information from all app instances in
one cloud-based database.

Upload

• After clicking the “Order Now” or “Add to Cart” buttons order and
user information is uploaded to the cloud.

Retrieve

• The data can then be collected and retrieved from every app instance in
Google Firebase.

FIREBASE INTEGRATION

FIREBASE INTEGRATION

• The google-services.json file is what ensures that all instances of the app are tied to the same

database and authentication systems.

• Necessary libraries and dependencies that are needed to work with the Firebase API were

added to the Gradle build files.

• The code largely involved creating a Firebase instance, establishing a connection, and creating a

document with keys and data.

• Most of the data in Firebase was designed to closely mimick the structure originally in SQLLite

to ease in the process of integrating Firebase with existing features.

9/5/2025
 53

SCREENSHOT OF AN ORDER WITHIN FIREBASE

9/5/2025
 54

EXAMPLE USER DATA STORED IN FIREBASE
(PLAIN TEXT PASSWORD IS STORED FOR DEBUGGING AND DEMONSTRATION PURPOSES ONLY AND WOULD NOT BE RETAINED IN A DEPLOYED APPLICATION.)

9/5/2025
 55

CART FEATURES

The cart allows users to:

o Select a list of items before checking out.

o Modify the quanitity of each item.

o Remove any unwanted items.

o View the total price of all items in the cart.

o Order all the items currently in the cart.

o Navigate to the orders activity after the checkout button is clicked

• The cart required the implementation of lists within the order document in Firebase.

• The cart uses a SQLLite cart table to store the data after the "Add to Cart" button in the product details activity
is clicked.

• It also required a modification the menu bar with a new icon, anew data model, a new adapter, a new activity,
and two new layout files to implement.

9/5/2025
 56

CART DEMO VIDEO

9/5/2025

57

CLICKING "ORDER NOW" IN THE DETAIL ACTIVITY OR "CHECKOUT" IN THE CART

SENDS THE NECESSARY ORDER INFORMATION TO GOOGLE FIREBASE

9/5/2025
 58

GOOGLE FIREBASE AUTHENTICATION

OBJECTIVES

9/5/2025

59

Authenticate

• Authenticate users using cloud based encrypted services that retrieve account
information from the web.

Manage

• Allow the organization using the app to view and manage users of the app

Consolidate

• Ensure sensitive user authentication data is handled by an authentication service,
while user data such as mailing address or phone number is handled in a users table.

GOOGLE FIREBASE AUTHENTICATION

9/5/2025

60

Similar to Firebase, Google's authentication service required the google-services.json file

It also required two necessary libraries that needed to be added to the Gradle build files.

After Google Firebase Authentication and its necessary libraries were imported, coding was simple

and consisted of establishing a connection and modifying the existing SQLLite log in and sign up code

to instead send the data to Firebase.

ORDERS ACTIVITY IMPLEMENTATION

• The cart and the storing of multiple items per order as opposed to the single item per order of

the original template meant that the order activity had to be coded almost from scratch.

• The order activity was divided into two parts. A list of all the orders, and a list of all the

products in an order.

• This information is retrieved from the orders table in Firebase. The userId field that is stored in

each orders document, and the userId field that is stored in the authentication system ensures

that only orders that a given logged in user placed are displayed.

9/5/2025
 61

ORDER ACTIVITY

(ORDER LIST)

The orders activity consists of clickable tiles

called order list items. Clicking on an order

list item takes the user to the order details

activity, which displays the products list

associated with a given order number.

9/5/2025

62

METHOD TO RETRIEVE ORDER DATA FROM FIREBASE

9/5/2025
 63

ORDER ACTIVITY

(PRODUCT LIST)

The order details activity displays its

information based on the orderId field that is

retrieved from the intent when an order list

item is clicked.

9/5/2025

64

ORDERS ACTIVITY

VIDEO DEMO

9/5/2025

65

BUG FIXES

• Changed the scaleType of the images in the activity_detail.xml to use fitCenter instead of

centerCrop to prevent parts of the images from being hidden when cropped.

• To fix the item counter on cart icon not updating, I created a global variable to store the cart_badge

element, assigned the value to it in the onCreateOptionsMenu function, and updated in each time

the MainActivity resumes.

• The total price and cart badge did not update until each activity was reloaded. I fixed this by adding

listeners to update the TextViews live whenever the SQLLite cart table was modified.

9/5/2025
 66

SHOPPING
APP
PROJECT CONTRIBUTIONS

NAYEEM HOSSAIN

9/5/2025

67

OVERVIEW

• What I Worked On:

- Integration of different app modules

- Managing GitHub branches and pull requests

- Designing and executing test cases

- Automating tests using JUnit

- Bug tracking on Google Sheets

9/5/2025

68

TOOLS &

TECHNOLOGIES I USED

9/5/2025

69

- GITHUB: BRANCHING, PRS, ISSUE

TRACKING

- ANDROID STUDIO: DEVELOPMENT,

EMULATOR

- FIREBASE: AUTH, DATABASE

- JUNIT: TESTING

- GOOGLE SHEETS: MANUAL BUG

LOGGING

KEY TASKS COMPLETED

9/5/2025

70

Integration
Tasks:

- Connected
Firebase auth to

login

- Integrated cart
with checkout

buttons

- Handled
backend-frontend

API flows

Testing Tasks:
- Created unit test

cases
- UI/UX testing

on devices
- Full integration

testing

CHALLENGES FACED &

SOLUTIONS

9/5/2025

71

Challenges:

- Merge conflicts

- API call failures

- UI layout issues

Solutions:

- Better Git practices

- Improved API integration strategies

- Responsive UI design

REFLECTIONS AND

LEARNINGS

9/5/2025

72

- Improved GitHub collaboration

- Early and continuous testing

- Delivered better user experience

- Gained hands-on Firebase and JUnit
skills

PROJECT

PROGRESS

EVALUATION

CHALLENGES AND RISKS

9/5/2025

74

Challenges:

Upgrading project
environment (Gradle,
SDK, Kotlin DSL) to

support Firebase
integration.

Migrating from local
SQLite to Firebase
without breaking
existing features.

Creating real-time
dashboards with
partial data (no

timestamps initially
available).

Risks:
Potential app crashes
due to large Firebase

updates.

Compatibility issues
when shifting to

newer Android build
versions.

Risk of user session
loss if authentication

was not managed
properly.

LIMITATIONS AND
TRADEOFFS

9/5/2025

75

Limitations:

• Registration trends (bar
chart) use simulated
data due to missing
timestamps.

• Plain-text storage of
some debugging
credentials temporarily
for demo purposes (not
production secure).

• Limited product details
due to scope/time
constraints (no payment
integration).

Tradeoffs:

• Prioritized Firebase
setup and core
functionality over
implementing a full
admin panel or
payment system.

• Focused on front-end
polish and user
analytics rather than
expanding product
categories.

SOLUTIONS

IMPLEMENTED

9/5/2025

76

Upgraded Gradle, SDKs, and Java versions to resolve
Firebase compatibility issues.

Redesigned database structure in Firebase to mirror
relational logic and ease migration from SQLite.

Simulated timestamp data to create a functional bar chart
for registration trends.

Session manager implemented to retain user login even
after app closure.

Image scaling issues fixed by changing scaleType to
fitCenter in layouts.

Created real-time listeners to update Cart badge and Total
price dynamically.

DISCUSSION AND OVERALL OUTCOMES

9/5/2025

77

Successfully built a branded and functional e-commerce app (CTRL+STYLE)
despite late feature additions.

Managed last-minute changes (splash screen update, user detail fetching, data
visualization) without major bugs.

Developed a scalable base for future features such as secure payments, admin
dashboards, and real-time notifications.

Final testing showed a stable app with live Firebase integration, polished UI, and
a consistent shopping experience.

DEVELOPMENT

INTEGRATION

AND TESTING -

OVERVIEW
• Purpose of this Section:

• To ensure that all modules of the
shopping app integrate smoothly
and the app functions reliably
under real-world conditions.

• Key Areas Covered:

- Module Integration

- GitHub-based Collaboration

- Functional, UI/UX & Security
Testing

- Automation & Bug Tracking

INTEGRATION APPROACH

9/5/2025

80

• Development & Collaboration Strategy:

• Modular Design: Features like cart, checkout, and user profile
built as separate components.

• Version Control with GitHub: Branching strategy used for
individual features, merged via Pull Requests.

• Continuous Integration: Frequent merges and testing helped
catch issues early.

GITHUB INTEGRATION WORKFLOW

9/5/2025

81

Tools & Practices:

- Feature Branching: Each teammate worked on a dedicated branch.

- Pull Requests (PRs): Used for peer review and code quality checks.

- Issues & Projects: Tasks, bugs, and progress tracked on GitHub board.

- Commits & Tags: Structured commits for easy traceability and tagging for major releases.

TESTING TYPES IMPLEMENTED

9/5/2025

82

1. Unit Testing – Individual logic like

login verification, cart updates.
2. System Testing – Entire app tested

end-to-end.

3. User Acceptance Testing –

Conducted mock runs and collected

user feedback.

UI/UX TESTING

• Visual & Interactive Consistency:

• Tested across different screen sizes and

devices.

• Ensured smooth navigation and minimal

latency in screen transitions.

• Verified proper display of images, fonts, and

layouts.

• Employed both emulators and real Android

devices for thorough validation.

9/5/2025

83

SECURITY &
PERFORMANCE TESTING

9/5/2025

84

Security Measures:

- Used Firebase Authentication for secure login.

- Firebase APIs ensured secure data transfer.

Performance Checks:

- Load testing of product browsing and checkout flow.

- Monitored response time of key actions like checking out
and viewing product details.

AUTOMATION & BUG

TRACKING

Automated Testing:

- JUnit used for unit and functional test cases.

- Automated test runs triggered before major PRs.

Bug Tracking with GitHub:

- Bugs logged as GitHub Issues, linked to commits and PRs.

- Prioritized using labels like 'bug', 'high priority', 'enhancement'.

9/5/2025

85

KEY OUTCOMES & LEARNINGS

9/5/2025

86

- GitHub streamlined
team collaboration and
issue tracking.

- Integration testing
revealed issues with the
data sent to and from
Firebase.

- Using multiple emulators
helped catch UI edge
cases missed.

- Lesson: Integration +
Testing = Reliable, User-
Friendly App.

IMPLEMENTATION

RESOLUTION OF PROBLEMS

• Most problems and solutions have been addressed earlier in the presentation, as we explained each feature

implementation.

• Problems Resolved:

• Incorrect image scaleType causing images to scale offscreen in product details – Kyle Schwartz

changed scaleType to use fitCenter instead of centerCrop.

• Incorrect total price being calculated when adding a quantity greater than 3 in the cart –

Morgan Snider created a variable, localVarPrice, to track the price of each item.

• User logged out each time the app is closed – Samana Dahal added a session manager to keep

the user logged in, and a logout button to log the user out.

9/5/2025
 88

LAST MINUTE FIXES
(AFTER SOME OF THE PRESENTATION WAS COMPLETED)

• Item counter on cart icon not updating – Kyle Schwartz created a global variable to store the

cart_badge element, assigned the value to it in the onCreateOptionsMenu function, and updated in

each time the MainActivity resumes.

• Total price and cart badge did not update until each activity was reloaded – Kyle Schwartz added

listeners to update the TextViews live whenever the SQLLite cart table was modified.

9/5/2025
 89

REAL WORLD SCENARIO

9/5/2025

90

Key Requirements for e-commerce = View products + Place Orders

The app would be suitable to implement into a real world scenario thanks
to its implementation of basic features required for an e-commerce app.

This is a basic demo that could be expanded on to create a fully functional
e commerce app.

THE PRODUCTS

9/5/2025

91

For demonstration purposes
our app uses a JSON file

stored in the app, but uses the
same process of reading the
JSON as though the JSON

was being pulled from a web
service.

The JSON file the products
are loaded from mimics a
JSON web service which

could pull product data from
a organizations existing

product management systems.

The process of reading the
JSON would be similar with
the addition of the necessary

code and a library for
handling requests from cloud

services or the web.

THE ORDERS

9/5/2025

92

Google Firebase provides a centralized
location where all order and user data can

be stored from each app instance

The data from Firebase can then be used
with backend order processing systems to

fulfill customer orders.

WHAT WE STILL NEED

• A real e-commerce app would need

o to store more data than we collect in our app

o a payment system

o more advanced security measures

o an order processing system connected to Firebase

o a more robust product management system

9/5/2025
 93

EVALUATION AND FUTURE WORK

9/5/2025

94

Enhanced Product Filtering and Search

• Implement advanced filtering options (e.g., by

size, brand, price range).

• Add a smart search with auto-suggestions and

recent searches.

User Profiles and Order History

• Allow users to view and manage their profile.

• Display previous orders and order status

updates.

 Payment Gateway Integration

• Integrate secure payment options (credit/debit,

PayPal, digital wallets).

Wishlist and Favorites

• Enable users to save items they like for

future purchases.

Admin Dashboard

• Build an admin panel to manage

products, view analytics, and track

sales.

Real-time Notifications

• Push notifications for new arrivals,

order updates, and exclusive deals.

CREDITS

Kyle Schwartz – Project Leader / Firebase Developer

Nayeem Hossain - Quality Assurance Specialist (Mobile

Application Tester)

Morgan Snider – Database Developer

Brenda Nahlik – Mobile Application Architect

Samana Dahal – Mobile Application Developer

Samikshya Adhikari – Data Scientist

REFERENCES

• CoderMian. (n.d.). Shopping-App [Source code]. GitHub.

https://github.com/CoderMian/Shopping-App.git

9/5/2025
 96

https://github.com/CoderMian/Shopping-App.git
https://github.com/CoderMian/Shopping-App.git
https://github.com/CoderMian/Shopping-App.git

THANK YOU!

9/5/2025
 97

	Slide 1: CS533 Final Project Presented By: The Appvengers
	Slide 2
	Slide 3
	Slide 4: Project analysis Functional Requirements
	Slide 5: Project analysis Functional Requirements
	Slide 6: Project analysis Functional Requirements
	Slide 8
	Slide 9: SDLC - Project Analysis Non-functional Requirements
	Slide 10: SDLC - Design
	Slide 11: SDLC - Implementation
	Slide 12: SDLC - Implementation
	Slide 13: SDLC – Testing and Debugging
	Slide 14: SDLC – Deployment and Maintenance
	Slide 15: Alternative solution analysis
	Slide 16: Product Data source
	Slide 17: Cart & Recently viewed items
	Slide 18: Orders and Authentication
	Slide 19: Project design
	Slide 20: Shopping App Project Contributions
	Slide 21: Overview
	Slide 22: FEATURE 1: Recently Saved Items
	Slide 23: Insert Product into recently viewed table
	Slide 24: Retrieve recently viewed Products from table
	Slide 25: Viewing Recently Viewed Products
	Slide 26: Viewing Recently Viewed Products
	Slide 27: Viewing Recently Viewed Products
	Slide 28: Feature 4: “About” Fragment
	Slide 29: “About” Section Layout
	Slide 30: Demonstration
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Shopping App Project Contributions
	Slide 38: Adding JSON functionality
	Slide 39: Adding JSON functionality
	Slide 40: Adding JSON functionality
	Slide 41: Error fixing
	Slide 42: Shopping App Project Contributions
	Slide 43: Branding and Login Page Design
	Slide 44: Splash Screen and Theme Updates
	Slide 45: Theme Update
	Slide 46: Firebase User Data Integration
	Slide 47: User Analytics Dashboard
	Slide 48: Final Integration and Project Completion
	Slide 49: Shopping App Project Contributions
	Slide 50: Overview
	Slide 51: Upgrades To Project Architecture (Required To Use Firebase APIs)
	Slide 52: Firebase Integration
	Slide 53: Firebase Integration
	Slide 54: Screenshot Of an Order Within Firebase
	Slide 55: Example User Data Stored In Firebase (Plain Text Password Is stored for debugging and demonstration purposes only and would not be retained in a deployed application.)
	Slide 56: Cart Features
	Slide 57: Cart Demo Video
	Slide 58: Clicking "Order Now" in the detail activity or "checkout" in the cart sends the necessary order information to Google Firebase
	Slide 59: Google Firebase Authentication Objectives
	Slide 60: Google Firebase Authentication
	Slide 61: Orders Activity Implementation
	Slide 62: Order Activity (Order List)
	Slide 63: Method To Retrieve Order Data From Firebase
	Slide 64: Order Activity (Product List)
	Slide 65: Orders Activity Video Demo
	Slide 66: Bug Fixes
	Slide 67: Shopping App Project Contributions
	Slide 68: OVERVIEW
	Slide 69: Tools & Technologies I Used
	Slide 70: Key Tasks Completed
	Slide 71: Challenges Faced & Solutions
	Slide 72: Reflections and Learnings
	Slide 73: Project progress evaluation
	Slide 74: Challenges and Risks
	Slide 75: Limitations and Tradeoffs
	Slide 76: Solutions Implemented
	Slide 77: Discussion and Overall Outcomes
	Slide 78: Development
	Slide 79: Integration and testing - OVERVIEW
	Slide 80: Integration Approach
	Slide 81: GitHub Integration Workflow
	Slide 82: Testing Types Implemented
	Slide 83: UI/UX Testing
	Slide 84: Security & Performance Testing
	Slide 85: Automation & Bug Tracking
	Slide 86: Key Outcomes & Learnings
	Slide 87: Implementation
	Slide 88: Resolution of Problems
	Slide 89: Last Minute Fixes (After Some of The Presentation Was Completed)
	Slide 90: Real World Scenario
	Slide 91: The Products
	Slide 92: The Orders
	Slide 93: What We Still Need
	Slide 94: Evaluation and future work
	Slide 95: Credits
	Slide 96: REFERENCES
	Slide 97

