I
|

|

-snggNWERSITY 1873®

SOUTHEAST MISSOURI .

Project Analysis

Software Development Life Cycle
(SDLC)

Login Page

Recently Viewed
ltems
PrOdUCI Flst Page .|
—
I-,. &
Turkish Locket - Cart
Create New Account ,j C I Oth I n g A p p
Product Detail -
A PR
&8s
: Flowchart
S~ Flu:vbr“s - Totl: $30.00
: About View Qrders After l"ogout
i. - - | -
"%‘5;\-' Silver Ring _ S
About / View Orders
/ Log Out Menu

PROJECT ANALYSIS
FUNCTIONAL REQUIREMENTS

Product Listing & Search

» Users must be able to sign up » Users should see a list of
and log in. available products.

« Each product should display
name, 1mage, price, and
description.

e Users should be able to ¢,
for products by scrolling

 Authentication should use
email & password.

 Users should be able to log
out.

PROJECT ANALYSIS
FUNCTIONAL REQUIREMENTS

Product Details About Page

 Clicking on a product should * The app should have an “About”
take the user to a Product Detail page to display general app
Page. information.

» The detail page should show
image, price, description, and an
option to increase and decrease
quantity, order, or add to cart.

PROJECT ANALYSIS
FUNCTIONAL REQUIREMENTS

Shopping Cart

« Cart items and recently viewed items « Users should be able to add products
will be stored in an SQLite database. to the cart.

o Users should be able to view and

* Orders and login/authorization .
remove cart items.

information will be stored 1n a

Firebase Firestore for persistence » Users should be able to increase or
across sessions/devices. decrease the quantity of items in the
cart.

e Firestore will store and sync data in ~IN

real time. » Users should be able to order

listed in the cart.

PROJECT ANALYSIS
FUNCTIONAL REQUIREMENTS

» The app should load * The Ul should be easy to
products within 2 seconds. navigate.
e The app should be * Buttons and actions

responsive of different should be intuitive.

screen Sizes.

SDLC - PROJECT ANALYSIS
NON-FUNCTIONAL REQUIREMENTS

Maintainability

 The app should handle many « The code should be modular
users and products without and well-documented.
crashing. » Future updates should be

easy to implement.

 Resources should be used«
place of hard-coded tex
colors.

SDLC - DESIGN

e MainActivity — Displays the product Use SQLite (DbHelper.java) for storing
list items in the cart

e DetailActivity — Shows product details * Design a new "Recently Viewed" table

e OrderActivity — Displays placed orders to store clicked products

e RecentlyViewedActivity — Shows e Implement Google Firebase for
recently viewed products storing placed orders and user

e CartActivity — Displays products information

placed in the cart

SDLC - IMPLEMENTATION

Product List Recently Viewed Activity

e Used RecyclerView in * Implemented a button-
MainActivity to display pased navigation to a new
products from RecentlyViewedActivity
products.json * Used SQLite to store and

e MainAdapter.java binds retrieve recently viewer

products

data to the Ul

SDLC - IMPLEMENTATION

Database Integration

e Extended DbHelper.java to support Recently
Viewed Products

e Added necessary methods to store and retrie
product data with json

SDLC — TESTING AND DEBUGGING

Key Fixes and Improvements

e Fixed missing Ul elements (RecyclerView & Button
placement)

e Debugged issue where Recently Viewed list was not
updating
e Improved layout for better Ul/UX

SDLC — DEPLOYMENT AND MAINTENANCE

GitHub Integration Future Enhancements

e Used GitHub Desktop to e Improve UI/UX for a more
commit and push changes modern design

e Resolved issues with e Add filtering & sorting for
syncing local commits to products

the GitHub repository

ALTERNATIVE
SOLUTION
ANALYSIS

PRODUCT DATA SOURCE

Current Solution (JSON Alternative Solution
File) (Remote API or Firestore)

e Does not impact e More complex
performance speed e Can dynamically change
e Cannot change products product list

without updating the app

CART & RECENTLY VIEWED ITEMS

Current Solution (SQLite) Alternatlgitzclgl:;clec;n et

e Simple — no required e Creates an abstract layer over
dependencies SQLite
e Error handling is harder e \erifies queries at compile time

e Can respond to live changes

e Larger learning curve

ORDERS AND AUTHENTICATION

Current Solution (Firebase Alternative Solution

Firestore) (Amazon Web Services)
e Less expensive/less e More expensive/more
flexible complex/more flexibility
e Real time data sync e Does not have real-time
e Only NoSQL data sync

e Supports SQL and NoSQL

PROJECT
DESIGN

Brenda Nahlik

SHOPPING
APP

PROJECT

CONTRIBUTIONS

OVERVIEW

My contribution improved the mobile
shopping app by:

Adding a “Recently Viewed” feature
using SQL.ite

Creating a dedicated activity for
recently viewed products

Adding an About page fragment from
the menu

Integrating RecyclerViews and
persistent storage

FEATURE 1
RECENTLY SAVED ITEMS

* Objective: Save clicked products to the added recently_viewed
table.

* On product click, insert product into 'recently_viewed' table }

* Then open DetailActivity with product data via Inte

INSERT PRODUCT INTO RECENTLY VIEWED

1 usage
public void insertRecentlyViewed(Product product) {

SQLiteDatabase db = getWritableDatabase();

// Check if the product already exis
Cursor cursor = db.rawQuery(sg: "SELECT * FROM " + RECENTLY_VIEWED_TB + " WHERE name=?", new String[]{product.getName()});
if (cursor.getCount() > 0) ﬂ

cursor.close();

return; // Product is already in recently viewed, no need to insert

}

cursor.close();

ContentValues values = new ContentValues();

values.put("name", product.getName());
values.put("description", product.getDescription());
values.put("price", product.getPrice());

values.put("image", product.getImage());

db.insert(RECENTLY_VIEWED_TB, nullColumnHack: null, values);

RETRIEVE RECENTLY VIEWED PRODUCTS FROM TABLE

// Retrieve recently viewed products
2 usages
public ArrayList<Product> getRecentlyViewed() {
ArraylList<Product> recentlyViewedlList = new Arraylist<>();
SQLiteDatabase database = this.getReadableDatabase();
Cursor cursor = database.rawQuery(sql: "SELECT # FROM " + RECENTLY_VIEWED_TB, selectionArgs: null);

while (cursor.moveToNext()) {

Product product = new Product(
cursor.getString(© 1), // name
cursor.getString(i 2), // descriptien
cursor.getString(© 3), // price
cursor.getString(it 4)

)i

recentlyViewedlList.add(product);

I
cursor.close();
return recentlyViewedList;

Objective: Show list of recently
viewed items.

VIEW Uses RecyclerView to show
RECENTLY -

VI EWE D Uses RecentlyViewed Adapter to
IT E IVI S ‘ggi iIt)éroduct data retrieved from

Loads data from
DbHelper.getRecently Viewed()

<xml version="1.0" encoding="utf-8"7?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"”
VIEW android:orientation="vertical">

REC ENTLY <androlidx.recyclerview.widget.RecyclerView
VIEWED android:id="@+id/recyclerView"

android:layout_width="match_parent"
ITEIVI S android:layout_height="match_parent"/>

WITH <fLinearlLayout>
RECYCLERVIEW

<?xml version="1.0" encoding="utf-8"2>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
android:padding="10dp">

<ImageView
android:id="[@+id/product_image"
D I S P LAY android:layout_width="80dp"
android:layout_height="80dp"

R E C E N T LY android:scaleType="centerCrop"

android:src="@drawable/ic_launcher_foreground" />

VIEWED

android:layout_width="wrap_content"
ITE IVI S v android:layout_height="wrap_content"

android:orientation="vertical"

android:paddinglLeft="10dp">

<TextView
android:id="(@+id/product_name"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

Objective: Add informational 'About' page.

FEATURE 2:
"ABOUT
FRAGMENT

Selected via menu item

— triggers loadFragment(new AboutFre

<?xml version="1.0" encoding="utf-8"2>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:gravity="center"

android:padding="20dp"=>

“ABOUT" s
android:layout_width="wrap_content"

v android:Llayout_height="wrap_content"
S E CTI D N android:text="About Our App"
android:textSize="20sp"
android:textStyle="bold"

LAYO UT android:textColor="@color/yellow"

android:paddingBottom="10dp" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/about_description"
android:textColor="@color/black"
android:textSize="1é6sp"/>
</LinearLayout>

DEMONSTRATION

© DbHelper.java RecentlyViewedAdap

: v activity_recently_viewed.xml item_

© OrdersAdapter public class DbHelper exten
© OrdersListAdapter I

(© ProductsAdapter

© RecentlyViewedAdapter 1usage

‘
®

public void insertRecer
SQLiteDatabase db =

=] Login
(© DetailProvider
[e] Models

AboutFragment Cursor cupsop = dbi Flower Dress O} E name=?", new String[]{product.getName()]

S5
Ared bnd black flower dress ‘ D

(©) CartActivity if (cursor.getCount

(© DbHelper cursor.close();

(© DetailActivity return;

LoginPage ¥

© MainActivity cursor.close(); : H |
Silver Ring | <
$12

& A silver diamond engagement O
values.put("name", q ring

(© OrderActivity
© OrderDetailsActivity ContentValues valug

© RecentlyViewedActivity

values.put("descriy

(© SessionManager a

o values.put("price" |

(© SignUp :
; values.put("image" |
java (generated
eoete Locket

db.insert (RECENTLY. $10

{} products.json } A gold simple locket
res
Sync Build Output Build Analyzer
uild TheAppvengers_CS533_ECommerceAndroi v Build TheAppvengers_| Turkish Locket ® Install successfully finished in 9 s 983 ms
uild Analyzer results available L, Download info , 28 up-to-dd

uild TheAppvengers_CS533_ECommerceAndroi

il I ilabl
uild Analyzer results available ® Gradle build finished in 1 m 46 s 950 ms

120-8R MDIE LITE.Q M1 49

Samana Dahal

Shopping
App

Project
Contributions

PROJECT
OVERVIEW

Implemented Session Manager to maintain user
login across app sessions

Redesigned Sign-Up Ul for improved user experience
Added Logout Button for better session control
Updated colorsxml for consistent design language

Contributed to READMEmd for docurmentation clarty

Participated in merge conflicts resolution and code
integration

Feature 1: Implemented Session Manager

PROBLEM: USERS WERE LOGGED OUT
EVERY TIME THEY NAVIGATED BACK.

SOLUTION:
* |ntroduced a Session Manager using

SharedPreferences
¢ Stored login state and user information securely
* Ensured seamless user experience across

sessions

[IMPROVED SIGN-UP Ul

Changes Made:

e ENhanced form layout and error
handling

e Added input validation

* Cleaned up Ul to align with
modern Android design
standards

ADDED A LOGOUT BUTTON

Purpose:
To allow users to explicitly end their session,
enhancing both user control and security.

Problem ldentified: D e,
* Previously, users had no clear way to log pLo)y TiverRing

il

out from the app.

* This led to potential confusion and left
sessions open on shared devices.

What | Did:
» Placed a logout icon/button in the top-right
comer of the main activity screen.

+ Linked it to the Session Manager to clear login Turkish Locket
data.

* Redirected users to the Login screen upon
logout.

ADDITIONAL CONTRIBUTIONS

Minor Enhancements:

¢ Updated color themes for branding
consistency

¢ README improvements to guide new
developers

Reflection:
e Learned about session persistence, Ul/UX
principles, and collaborative version
control

¢ |earned about version control using Git
and GitHub

¢ Enjoyed contributing to a real-world e-
commerce app with a full team

Morgan Snider

SHOPPING
APP

PROJECT

CONTRIBUTIONS

g6 products.json

|

ADDING JSON
FUNCTIONALITY

A JSON file is used to load the
product information as shown
here

v e

% products.json

Productjava

EcomerceApp.ShoppingApp.Models

String getName()
setName(String name) ! = name

String getDescription()
{

String description)

String getPrice()

(String price) = price
String getImage()
(String image) t : = image

ADDING JSON
FUNCTIONALITY

A Product model creates
objects from the JSON 1nput

r
1

AssetManager assetManager = getAssets()

InputStreamReader =

Stri
Gson

List

Arra

putStream inputStream = assetManager.open(

ng jsonString = convertStreamToString(inputStream)

gson = Gson()

{Product> productlList = gson.fromJson(jsonStrin

0q

(

yList<MainModel> list = ArraylList<>()

(Product product : productlList)

String imageName = product.getImage();

= getResources().getIdentifier(imageName

MainModel model = MainModel (
product.getName()
product.getDescription()
product.getPrice()
imageName

)

list.add(model)

InputStreamReader(inputStream);

TypeToken<List<Product>>(){}.getType())

ADDING JSON
FUNCTIONALITY

In the MainActivity,
product.json is read and
create a list of Product
objects which are then
translated into the
MainModel objects of the
base code and displayed in
the recyclerviewer

.setOnClickListener(

id onClick(View view) {
Integer.parselnt(

.setText(String.valueOf(

-))
. .setText(String.value0f(Inte . .getText().toString())+))
Toast.makeText(ilActivity. + . .getText(), Toast. .show()

.setOnClickListener(

o e Fixed an error where the
getText() equals("1")) quantity and price of an
:Tntege‘,pm*selnt(. . V.getText().tcSt‘i-‘g()]- Order Was displaying

.setText(String.valuelf()

setText(String.valueOf(Integer.parselnt(. .getText().toString())

Deta‘llﬁ:t;vity. is : .’ -getText() %Ués‘t‘ ; .show() ; lncorreCtly

(Item of price $5, quantity
of 3 was displaying as $20
total instead of $15)

SHOPPING

APP

PROJECT
CONTRIBUTIONS

Samikshya Adhikari

BORDEAUX, GRAAG

9/5/2025 4?2

BRANDING AND LOGIN PAGE DESIGN

(
CTRL+STYLE

* Created a custom Login Page to establish

the app’s first impression.

* Branded the app as CTRL+STYLE, setting

the theme of the project.

* Designed and applied a new logo and

modernized color palette.

» Updated the AppBar to better match the

overall background and brand aesthetic.

9/5/2025 43

SPLASH SCREEN AND THEME UPDATES

* Developed a new Splash Screen featuring the
CTRL+STYLE logo and green background.

* Replaced the earlier yellow theme with a

cohesive green-based color theme for visual
harmony.

* Enhanced user experience with smoother app
loading animations.

CTRL+STYLE

9/5/2025 44

oo @

T H E I\/I E €< UserList

Sam

samikshya
=4 samikshyaadhikari2580@gmail.... &

=)

N

o 2= samadh@semo.edu &)
PDATE s
kwschwar Lz s @semo.edu PY After
¢ Before AF3-880-0370
o 1234567890
=4 test@test.mail (?/“
1234567890 =
test
testimtest. mail
tast
Kyboo
miksh B4 kwschwartz1s@semo.edu ©®
sa ya 573-880-0370
samikshyaadhikan25280mgmail.com
FRZI7H2046
o 1234567890
=4 test@test.mail \\VJ‘
sdahal7ss -
test
sdahal?=@semo.edu
FETTHTT

ADD TEST USER VIEW ANALYTICS

9/5/2025 45

FIREBASE USER DATA INTEGRATION

& UserList

Q- o * Fetched registered user details

° B (name, email, phone) from Firestore.

o * Displayed user information in a

o: structured User List inside the app.

o 1234567890 * Enabled real-time updates whenever
e a user signed up or edited their

Q=" o details.

ADD TEST USER VIEW ANALYTICS

9/5/2025

46

USER ANALYTICS
DASHBOARD

Built a Bar Chart showing simulated
6-month registration trends.

Developed a Pie Chart based on real
Firestore data to visualize email
domain distribution.

Enabled dynamic, visual insights
directly from database queries.

X

< User Analytics

User Registration Trends

10.31

10.2 102

9.6 9.6
9.0 9.0

8.4 8.4

7.8 7.8

7.46
7.32
Dec Jan

Oct Nov
" M I User Registrations

7.2

Email Domain Distribution

9/5/2025

47

FINAL INTEGRATION AND PROJECT

OO0 M

* Merged all Ul, functional, and
visualization updates into the Main
branch.

* Coordinated last-minute
improvements without breaking
existing features.

* Contributed to delivering a fully
functional, branded, and polished
final shopping app.

CTRL+STYLE

&

gold simple locket

COMPLETION

9/5/2025

48

Kyle Schwartz

SHOPPING

APP

PROJECT
CONTRIBUTIONS

OVERVIEW

Upgraded project to latest Gradle and Java technologies supported by Firebase.

Implemented Google Firebase for storing user and order information

Developed a cart activity using SQLLite and a checkout feature that sends cart data from SQLLite to Firebase.
Also added an “Add to Cart” icon in the detail activity, and a cart icon in the menu bar.

Implemented more advanced authentication with Google Firebase Authenticate

Finalized “Order Now” and “Checkout” buttons to send place an order by sending user and order information to
Firebase.

Re-coded the orders activity to retrieve order data from Firebase.

9/5/2025 50

UPGRADES TO PROJECT ARCHITECTURE

(REQUIRED TO USE FIREBASE APIS)

« This was the most difficult part of the project for me because it required major changes to the
Gradle code, and a good understanding of how each component in the app worked.

» Firebase required the project to use a more modern build setup. To resolve several errors, I
made the following upgrades to the original, somewhat outdated, template.

o Upgraded Gradle compile SDK from 32 to 35.

o Modified existing build files to use the more modern Kotlin programming language instead of
Groovy.

o Upgraded the Java version from 1.8 to 11.
o Re-coded any code that threw depreciation errors.
o Began to use Android Studio Meerkat for Development.

9/5/2025 51

FIREBASE INTEGRATION

» Objective: Store user an order information from all app instances in
one cloud-based database.

 After clicking the “Order Now” or “Add to Cart” buttons order and
Olest user information 1s uploaded to the cloud.

e The data can then be collected and retrieved from every app instance in
Google Firebase.

FIREBASE INTEGRATION

* The google-services.json file 1s what ensures that all instances of the app are tied to the same
database and authentication systems.

* Necessary libraries and dependencies that are needed to work with the Firebase API were
added to the Gradle build files.

* The code largely involved creating a Firebase instance, establishing a connection, and creating a
document with keys and data.

* Most of the data in Firebase was designed to closely mimick the structure originally in SQLLite
to ease 1n the process of integrating Firebase with existing features.

9/5/2025 53

SCREENSHOT OF AN ORDER WITHIN FIREBASE

+ Start collection
orders

users

> 05d173e2-b0c0-

1=

orders

Add document

B5d173e2-bBcA-411d-aBe2-1ed5F5F .

>

&4 More in Google Cloud v

B 05d17

+ Start collection
+ Add field
items
(:]
imagelrl: 2131165381
price: 10
productId: nul
productlame: "Locket"

quantity: 1

imagellrl: 2131165457

price: 20

productId: noll

productName : "Pink Dress"

quantity: 1
orderDate: 1745208333537
orderId: "05d173e2-b0c0-411d-a8c2-1e45f5f53ed2”
totalAmount: 30

userld: "0zTi305WBdSKATSXFEpXuNILAIp2"

9/5/2025

54

EXAMPLE USER DATA STORED IN FIREBASE

(PLAIN TEXT PASSWORD IS STORED FOR DEBUGGING AND DEMONSTRATION PURPOSES ONLY AND WOULD NOT BE RETAINED IN A DEPLOYED APPLICATION.)

@ » users » eNvKkM9bRM.J. &% More in Google Cloud
2= (default) ¥ users = B eNvKkMIbRMITTnbPKCaM
+ Start collection + Add document + Start collection
+ Add field
LLLLL > CUSTOMER_EMAIL : ‘“test@testmail®

CUSTOMER_NAME : “test”
CUSTOMER_PASSWORD : “tester1234"

CUSTOMER_PHONE : “test"

eNvKkMSbRMJTTnbPKCgM >

9/5/2025 55

CART FEATURES

The cart allows users to:

Select a list of items before checking out.

Modify the quanitity of each item.

Remove any unwanted items.

View the total price of all items in the cart.

Order all the items currently in the cart.

Navigate to the orders activity after the checkout button is clicked

O O O O O O

* The cart required the implementation of lists within the order document in Firebase.

» The cart uses a SQLLite cart table to store the data after the "Add to Cart" button in the product details activity
is clicked.

It also required a modification the menu bar with a new icon, anew data model, a new adapter, a new activity,
and two new layout files to implement.

9/5/2025 56

[& Nexus 6 API 27 =t

O DU <« OO0 @

CART DEMO VIDEO

Flower Dress
$5
Ared and black flower dress

td

Silver Ring

$12

A silver diamond engagement
ring

Locket
810
A gold simple locket

Turkish Locket

9/5/2025 57

CLICKING "ORDER NOW"IN THE DETAIL ACTIVITY OR "CHECKOUT" IN THE CART
SENDS THE NECESSARY ORDER INFORMATION TO GOOGLE FIREBASE

9/5/2025 58

GOOGLE FIREBASE AUTHENTICATION
OBJECTIVES

e Authenticate users using cloud based encrypted services that retrieve account
information from the web.

e Allow the organization using the app to view and manage users of the app

e Ensure sensitive user authentication data is handled by an authentication service,
while user data such as mailing address or phone number is handled in a users table.

9/5/2025 59

GOOGLE FIREBASE AUTHENTICATION

Similar to Firebase, Google's authentication service required the google-services.json file

It also required two necessary libraries that needed to be added to the Gradle build files.

After Google Firebase Authentication and its necessary libraries were imported, coding was simple
and consisted of establishing a connection and modifying the existing SQLLite log in and sign up code
to instead send the data to Firebase.

9/5/2025 60

ORDERS ACTIVITY IMPLEMENTATION

» The cart and the storing of multiple items per order as opposed to the single item per order of
the original template meant that the order activity had to be coded almost from scratch.

* The order activity was divided into two parts. A list of all the orders, and a list of all the
products in an order.

* This information is retrieved from the orders table in Firebase. The userld field that is stored in
each orders document, and the userld field that is stored in the authentication system ensures
that only orders that a given logged in user placed are displayed.

9/5/2025 61

ORDER ACTIVITY
(ORDER LIST)

The orders activity consists of clickable tiles
called order list items. Clicking on an order
list item takes the user to the order details
activity, which displays the products list
associated with a given order number.

Order Date: 2025-04-09
Order ID: 2537e0d6-bf12-41f6-3604-515ced7a69a2
Total Amount: §5.00

Order Date: 2025-04-07
Order ID: 4699c3a0-216b-45h8-alad-2dfe52efdcha
Total Amount: 546.00

Order Date: 2025-04-08
Order ID: fdédceeB-c77a-4d72-b728-966d8152ec9a
Total Amount: $10.00

9/5/2025

62

METHOD TO RETRIEVE ORDER DATA FROM FIREBASE

private void fetchOrdersFromFirestore() {

String userld = firebaseAuth.getCurrentUser().getUid(); // Get the current user's UID
firestore.collection(collectionPath: "orders'") CollectionReference
.wherekEqualTo(field: "userId", userld) // Filter orders by the current user's ID

.get() Task<QuerySnapshot>
.addOnSuccessListener(QuerySnapshot queryDocumentSnapshots -> {
if (!queryDocumentSnapshots.isEmpty()) {
List<0OrdersModel> fetchedOrders = qgueryDocumentSnapshots.toObjects(0OrdersModel.class);
ordersList.clear();
ordersList.addAll(fetchedOrders);
adapter.notifyDataSetChanged(); // Notify the adapter of data changes
} else {
Toast.makeText(context: OrderActivity.this, text: "No orders found", Toast.LENGTH_SHORT).show();

P

.addOnFailurelistener(Exception e -> {
Toast.makeText(context: OrderActivity.this, text: "Error fetching orders: " + e.getMessage(), Toast.LENGTH_SHORT).show();
Log.e(tag: "OrderActivity", msg "Error fetching orders", e);

});

9/5/2025 63

ORDER ACTIVITY
(PRODUCT LIST)

The order details activity displays its
information based on the orderld field that is
retrieved from the intent when an order list
item 1s clicked.

String orderlId = getIntent().getStringExtral(
fetchOrderDetails(orderId);

name: "orderId");

Locket
Quantity: 2
Price: §10.00

Pink Dress
Quantity: 1
Price: 20,00

9/5/2025

64

ORDERS ACTIVITY meli e
VIDEO DEMO

Flower Dress
85
Ared and black flower dress

Silver Ring

$12

A silver diamond engagement
ring

Locket
$10
A gold simple locket

N
Turkish Locket

9/5/2025

65

BUG FIXES

* Changed the scaleType of the images in the activity_detail.xml to use fitCenter instead of
centerCrop to prevent parts of the images from being hidden when cropped.

» To fix the item counter on cart icon not updating, I created a global variable to store the cart_badge
element, assigned the value to it in the onCreateOptionsMenu function, and updated in each time
the MainActivity resumes.

« The total price and cart badge did not update until each activity was reloaded. I fixed this by adding
listeners to update the TextViews live whenever the SQLLite cart table was modified.

9/5/2025 66

SHOPPING
APP
PROJECT CONTRIBUTIONS

NAYEEM HOSSAIN

9/5/2025 67

OVERVIEW

* What I Worked On:

- Integration of different app modules

- Managing GitHub branches and pull requests
- Designing and executing test cases

- Automating tests using JUnit

- Bug tracking on Google Sheets

9/5/2025

68

T00LS & - GITHUB: BRANCHING, PRS, ISSUE
TECHNOLOGIES I USED s

- ANDROID STUDIO: DEVELOPMENT,
EMULATOR

- FIREBASE: AUTH, DATABASE

- JUNIT: TESTING

- GOOGLE SHEETS: MANUAL BUG
LOGGING

9/5/2025 69

KEY TASKS COMPLETED

Integration
Tasks:

Testing Tasks:

- Connected
Firebase auth to
login

- Created unit test
cases

- Integrated cart
with checkout
buttons

- UI/UX testing
on devices

- Handled
backend-frontend
API flows

- Full integration
testing

9/5/2025 70

CHALLENGES FACED & Challenges:
SOLUTIONS

- Merge conflicts

- API call failures

- Ul layout 1ssues

Solutions:

- Better Git practices

- Improved API integration strategies

- Responsive Ul design

9/5/2025 71

REFLECTIONS AND
LEARNINGS

- Improved GitHub collaboration

- Early and continuous testing

- Delivered better user experience

- Gained hands-on Firebase and JUnit
skills

9/5/2025 72

PROJECT

PROGRESS

Z
S
>
S
<
N
]

CHALLENGES AND RISKS

Challenges:

Upgrading project
environment (Gradle,
SDK, Kotlin DSL) to

support Firebase
integration.

Potential app crashes
due to large Firebase
updates.

Migrating from local
SQLite to Firebase
without breaking
existing features.

Compatibility issues
when shifting to
newer Android build
versions.

Creating real-time
dashboards with
partial data (no

timestamps 1nitially
available).

Risk of user session
loss if authentication
was not managed

properly.

9/5/2025

74

LIMITATIONS AND
TRADEOQOFFS

» Registration trends (bar
chart) use simulated
data due to missing
timestamps.

 Plain-text storage of
some debugging
credentials temporarily
for demo purposes (not
production secure).

» Limited product details
due to scope/time
constraints (no payment
integration).

* Prioritized Firebase
setup and core
functionality over
implementing a full
admin panel or
payment system.

* Focused on front-end
polish and user
analytics rather than
expanding product
categories.

9/5/2025

75

SOLUTIONS
IMPLEMENTED

Upgraded Gradle, SDKSs, and Java versions to resolve
Firebase compatibility issues.

Redesigned database structure in Firebase to mirror
relational logic and ease migration from SQLite.

Simulated timestamp data to create a functional bar chart
for registration trends.

Session manager implemented to retain user login even
after app closure.

Image scaling 1ssues fixed by changing scaleType to
fitCenter in layouts.

Created real-time listeners to update Cart badge and Total
price dynamically.

9/5/2025

76

DISCUSSION AND OVERALL QOUTCOMES

<>

Successfully built a branded and functional e-commerce app (CTRL+STYLE)
despite late feature additions.

Managed last-minute changes (splash screen update, user detail fetching, data
visualization) without major bugs.

Developed a scalable base for future features such as secure payments, admin
dashboards, and real-time notifications.

Final testing showed a stable app with live Firebase integration, polished UI, and
a consistent shopping experience.

9/5/2025 77

DEVELOPMENT

INTEGRATION
AND TESTING -
OVERVIEW

* Purpose of this Section:

* To ensure that all modules of the
shopping app integrate smoothly
and the app functions reliably
under real-world conditions.

* Key Areas Covered:
- Module Integration
- GitHub-based Collaboration

- Functional, Ul/UX & Security
Testing

- Automation & Bug Tracking

INTEGRATION APPROACH

* Development & Collaboration Strategy:

» Modular Design: Features like cart, checkout, and user profile
built as separate components.

* Version Control with GitHub: Branching strategy used for
individual features, merged via Pull Requests.

» Continuous Integration: Frequent merges and testing helped
catch 1ssues early.

9/5/2025 80

GITHUB INTEGRATION WORKFLOW

Tools & Practices:

- Feature Branching: Each teammate worked on a dedicated branch.

- Pull Requests (PRs): Used for peer review and code quality checks.

- Issues & Projects: Tasks, bugs, and progress tracked on GitHub board.

- Commits & Tags: Structured commits for easy traceability and tagging for major releases.

9/5/2025 81

TESTING TYPES IMPLEMENTED

G,

1. Unit Testing — Individual logic like 2. System Testing — Entire app tested
login verification, cart updates. end-to-end.

Fath

3. User Acceptance Testing —
Conducted mock runs and collected
user feedback.

9/5/2025 82

UI/UX TESTING

Visual & Interactive Consistency:

Tested across different screen sizes and
devices.

Ensured smooth navigation and minimal
latency in screen transitions.

Verified proper display of images, fonts, and
layouts.

Employed both emulators and real Android
devices for thorough validation.

9/5/2025 83

SECURITY &

PERFORMANCE TESTING

- Used Firebase Authentication for secure login.

- Firebase APIs ensured secure data transfer.

Performance Checks:

- Load testing of product browsing and checkout flow.

- Monitored response time of key actions like checking out
and viewing product detalls.

9/5/2025 84

AUTOMATION & BUG
TRACKING

Automated Testing:
- JUnit used for unit and functional test cases.

- Automated test runs triggered before major PRs.

Bug Tracking with GitHub:

- Bugs logged as GitHub Issues, linked to commits and PRs.

- Prioritized using labels like 'bug', 'high priority', 'enhancement'.

KEY OUTCOMES & LEARNINGS

- GitHub streamlined
team collaboration and
issue tracking.

- Using multiple emulators
helped catch UI edge
cases missed.

- Integration testing
revealed 1ssues with the
data sentto and from
Firebase.

- Lesson: Integration +
Testing = Reliable, User-
Friendly App.

9/5/2025 86

IMPLEMENTATION

RESOLUTION OF PROBLEMS

* Most problems and solutions have been addressed earlier in the presentation, as we explained each feature
implementation.

 Problems Resolved:

* Incorrect image scaleType causing images to scale offscreen in product details — Kyle Schwartz
changed scaleType to use fitCenter instead of centerCrop.

 Incorrect total price being calculated when adding a quantity greater than 3 in the cart —
Morgan Snider created a variable, localVarPrice, to track the price of each item.

» User logged out each time the app 1s closed — Samana Dahal added a session manager to keep
the user logged in, and a logout button to log the user out.

9/5/2025 88

LAST MINUTE FIXES

(AFTER SOME OF THE PRESENTATION WAS COMPLETED)

« Item counter on cart icon not updating — Kyle Schwartz created a global variable to store the
cart_badge element, assigned the value to it in the onCreateOptionsMenu function, and updated in
each time the MainActivity resumes.

« Total price and cart badge did not update until each activity was reloaded — Kyle Schwartz added
listeners to update the TextViews live whenever the SQLLite cart table was modified.

9/5/2025 80

REAL WORLD SCENARIO

Key Requirements for e-commerce = View products + Place Orders

The app would be suitable to implement into a real world scenario thanks
to 1its implementation of basic features required for an e-commerce app.

This 1s a basic demo that could be expanded on to create a fully functional
€ commerce app.

9/5/2025 90

THE PRODUCTS

For demonstration purposes
our app uses a JSON file
stored in the app, but uses the
same process of reading the
JSON as though the JSON
was being pulled from a web
service.

The JSON file the products
are loaded from mimics a
JSON web service which

could pull product data from
a organizations existing

product management systems.

The process of reading the
JSON would be similar with
the addition of the necessary

code and a library for
handling requests from cloud
services or the web.

9/5/2025

THE ORDERS

Google Firebase provides a centralized The data from Firebase can then be used
location where all order and user data can with backend order processing systems to
be stored from each app instance fulfill customer orders.

9/5/2025 92

WHAT WE STILL NEED

* A real e-commerce app would need
o to store more data than we collect in our app
O a payment system
o more advanced security measures
o an order processing system connected to Firebase

o a more robust product management system

9/5/2025 03

EVALUATION AND FUTURE WORK

Enhanced Product Filtering and Search

« Implement advanced filtering options (e.g., by Wishlist and Favorites
size, brand, price range). * Enable users to save items they like for
* Add a smart search with auto-suggestions and future purchases.
recent searches.
Admin Dashboard
User Profiles and Order History * Build an admin panel to manage
 Allow users to view and manage their profile. products, view analytics, and track
* Display previous orders and order status sales.
updates.
Real-time Notifications
Payment Gateway Integration « Push notifications for new arrivals,
- Integrate secure payment options (credit/debit, order updates, and exclusive deals.

PayPal, digital wallets).

9/5/2025 94

Kyle Schwartz — Project Leader / Firebase Developer

Nayeem Hossain - Quality Assurance Specialist (Mobile
Application Tester)

4l ey = § B
Morgan Snider — Database Developer

"IN A |

f Brenda Nahlik — Mobile Application Architect
> s

Samana Dahal — Mobile Application Developer

@V)\ Samikshya Adhikari — Data Scientist

REFERENCES

e CoderMian. (n.d.). Shopping-App [Source code]. GitHub.
https://github.com/CoderMian/Shopping-App.git

9/5/2025 96

https://github.com/CoderMian/Shopping-App.git
https://github.com/CoderMian/Shopping-App.git
https://github.com/CoderMian/Shopping-App.git

THANK YOU!

2025 97

	Slide 1: CS533 Final Project Presented By: The Appvengers
	Slide 2
	Slide 3
	Slide 4: Project analysis Functional Requirements
	Slide 5: Project analysis Functional Requirements
	Slide 6: Project analysis Functional Requirements
	Slide 8
	Slide 9: SDLC - Project Analysis Non-functional Requirements
	Slide 10: SDLC - Design
	Slide 11: SDLC - Implementation
	Slide 12: SDLC - Implementation
	Slide 13: SDLC – Testing and Debugging
	Slide 14: SDLC – Deployment and Maintenance
	Slide 15: Alternative solution analysis
	Slide 16: Product Data source
	Slide 17: Cart & Recently viewed items
	Slide 18: Orders and Authentication
	Slide 19: Project design
	Slide 20: Shopping App Project Contributions
	Slide 21: Overview
	Slide 22: FEATURE 1: Recently Saved Items
	Slide 23: Insert Product into recently viewed table
	Slide 24: Retrieve recently viewed Products from table
	Slide 25: Viewing Recently Viewed Products
	Slide 26: Viewing Recently Viewed Products
	Slide 27: Viewing Recently Viewed Products
	Slide 28: Feature 4: “About” Fragment
	Slide 29: “About” Section Layout
	Slide 30: Demonstration
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Shopping App Project Contributions
	Slide 38: Adding JSON functionality
	Slide 39: Adding JSON functionality
	Slide 40: Adding JSON functionality
	Slide 41: Error fixing
	Slide 42: Shopping App Project Contributions
	Slide 43: Branding and Login Page Design
	Slide 44: Splash Screen and Theme Updates
	Slide 45: Theme Update
	Slide 46: Firebase User Data Integration
	Slide 47: User Analytics Dashboard
	Slide 48: Final Integration and Project Completion
	Slide 49: Shopping App Project Contributions
	Slide 50: Overview
	Slide 51: Upgrades To Project Architecture (Required To Use Firebase APIs)
	Slide 52: Firebase Integration
	Slide 53: Firebase Integration
	Slide 54: Screenshot Of an Order Within Firebase
	Slide 55: Example User Data Stored In Firebase (Plain Text Password Is stored for debugging and demonstration purposes only and would not be retained in a deployed application.)
	Slide 56: Cart Features
	Slide 57: Cart Demo Video
	Slide 58: Clicking "Order Now" in the detail activity or "checkout" in the cart sends the necessary order information to Google Firebase
	Slide 59: Google Firebase Authentication Objectives
	Slide 60: Google Firebase Authentication
	Slide 61: Orders Activity Implementation
	Slide 62: Order Activity (Order List)
	Slide 63: Method To Retrieve Order Data From Firebase
	Slide 64: Order Activity (Product List)
	Slide 65: Orders Activity Video Demo
	Slide 66: Bug Fixes
	Slide 67: Shopping App Project Contributions
	Slide 68: OVERVIEW
	Slide 69: Tools & Technologies I Used
	Slide 70: Key Tasks Completed
	Slide 71: Challenges Faced & Solutions
	Slide 72: Reflections and Learnings
	Slide 73: Project progress evaluation
	Slide 74: Challenges and Risks
	Slide 75: Limitations and Tradeoffs
	Slide 76: Solutions Implemented
	Slide 77: Discussion and Overall Outcomes
	Slide 78: Development
	Slide 79: Integration and testing - OVERVIEW
	Slide 80: Integration Approach
	Slide 81: GitHub Integration Workflow
	Slide 82: Testing Types Implemented
	Slide 83: UI/UX Testing
	Slide 84: Security & Performance Testing
	Slide 85: Automation & Bug Tracking
	Slide 86: Key Outcomes & Learnings
	Slide 87: Implementation
	Slide 88: Resolution of Problems
	Slide 89: Last Minute Fixes (After Some of The Presentation Was Completed)
	Slide 90: Real World Scenario
	Slide 91: The Products
	Slide 92: The Orders
	Slide 93: What We Still Need
	Slide 94: Evaluation and future work
	Slide 95: Credits
	Slide 96: REFERENCES
	Slide 97

