
E-commerce
WebDevelopment

• Kyle Schwartz

Team Leader,

Front End Developer

• Sai Ram Ankata

Backend Developer

• Vira Vasylevska

Cloud Application Developer

• Brenden Dane

Database Developer

• Teja Reddy Palle

QA Special ist

• Yijun Liu

Cloud Security Special ist CS 506 Distributed
Cloud Computing

Project

Analysis

Motivation

The rapid growth of e-commerce has created a high demand for efficient and user-
friendly platforms, yet many small businesses face challenges in establishing an online
presence due to limited technical expertise. Recognizing this gap, we aim to develop a
scalable e-commerce solution that enhances the shopping experience for users while
supporting small businesses.

Problems We Aim to Solve:

Accessibility User Experience Scalability

What We Hope to Achieve:

• A fully functional, visually appealing e-commerce website.
• Hands-on experience with Django and cloud-based database integration.
• An impactful solution that bridges the gap between small businesses

 and online commerce.

Project Objectives

Create a User-Friendly Platform

Build a Functional Shopping System

Enhance Data Security

Ensure Basic Scalability

Provide Responsive Design

Facilitate Simple Maintenance

Promote Accessibility

SDLC Model
Gathering

Planning

System Design

Development

Testing

Deployment

Maintenance

Evaluation
I. Gathering
• Understand the project objectives and

gather user requirements.
• Identify the key features: user

authentication (login/signup), product
listing, product details, cart, checkout, and
order confirmation.

• Document user needs, such as a user-
friendly interface and secure payment
handling for future enhancements.

II. Planning
• Define the project scope, timeline, and

deliverables.
• Assign roles within the team (e.g., front-

end, back-end, database integration).
• Select tools and technologies: HTML, CSS,

JavaScript for the front end, Python
Django for the back end.

SDLC Model
Gathering

Planning

System Design

Development

Testing

Deployment

Maintenance

Evaluation
III. System Design:
• Create wireframes for the user interface (UI)

design of the website.
• Define the layout for pages like login, sign-

up, product details, cart, and checkout.
• Design the database schema for storing user

information, product details, and orders.

IV. Development
Front-End Development:

• Implement responsive UI using HTML,
CSS, and JavaScript.

• Develop pages such as Login, Sign-Up,
Product Listing, Product Details, Cart,
and Checkout.

Back-End Development:
• Use Python Django to build the server-

side logic and APIs.
• Integrate database models for users,

products, and transactions.

SDLC Model
Gathering

Planning

System Design

Development

Testing

Deployment

Maintenance

Evaluation
V. Testing
• Perform unit testing for individual

modules (e.g., cart functionality, user
authentication).

• Conduct integration testing to ensure
all components work together.

• Test for usability, responsiveness, and
bug fixes.

VI. Deployment:
• Deploy the e-commerce website to a

cloud platform or a local server.
• Ensure the website is accessible to

end-users and performs well under
varying traffic conditions.

SDLC Model
Gathering

Planning

System Design

Development

Testing

Deployment

Maintenance

Evaluation
VII. Maintenance
• Monitor website performance and fix

any bugs reported by users.
• Update features based on user

feedback, such as adding more
payment methods or enhancing the UI.

• Implement regular security updates to
protect user data.

VIII. Evaluation
• Gather user feedback post-deployment

to evaluate the success of the project.
• Analyze the performance metrics and

identify areas for improvement.
• Prepare for scaling the system to

handle additional features or higher
traffic.

Functional Requirements

User Management

Product Management

Cart Management

Order Management

Checkout Process

Session Management

The e-commerce website provides secure User Management, allowing
users to register, log in, reset passwords, and for admins to manage
products.

Product Management lets admins define product details like name,
price, and stock, while users can browse and view product information.

In Cart Management, users can add, adjust, or remove items, with the
cart automatically calculating the total price.

Order Management enables users to place orders, track details like
prices and dates, and review their order history.

The Checkout Process is simple, with future plans for payment
integration.

Finally, Session Management ensures secure, uninterrupted access
until users log out or their session expires.

Non-Functional Requirements

The app need to have fast performance, with pages loading in 2-3 seconds and features
like the cart updating in real time. It also needs to be scalable, so it can handle at least
1,000 users at the same time and support growth as the platform expands.

Security is critical, requiring user data, like passwords, to be encrypted, and the site must
use HTTPS for secure communication. Role-based permissions will be used to control admin
access. The system must also be reliable, with 99.9% uptime and quick recovery in case of
issues.

We want the website to be easy to use, with a simple, mobile-friendly design that works on
different devices and browsers (like Chrome, Safari, and Edge). Accessibility is also
important, so we’ll follow standards like WCAG, offering features like high-contrast mode
and text resizing.

Finally, we’ll make sure the code is well-organized and documented for future updates
and maintenance.

Alternative

Solution

Analysis

Backend (Django Framework)

The backend is built using Django and Django REST Framework (DRF)
to manage authentication, product management, user accounts, cart
operations, order processing, and payment handling.

Frontend (HTML, CSS, JavaScript)

Provides an interactive user interface for customers to browse products,
manage carts, and place orders.

The chosen stack balances:
✓ Scalability
✓ Security
✓ Ease of use

Alternative Solution Analysis
Backend Alternatives

Pros: Cons:

Flask (Python) • Lightweight and
minimalistic.

• Ideal for smaller projects
with fewer dependencies.

• Easier to set up for
custom APIs.

• Requires more manual
setup for features like
authentication.

• Less out-of-the-box
support for admin
interfaces compared to
Django.

Express.js (Node.js) • Fast and efficient for real-
time applications.

• Large ecosystem of
plugins and tools.

• High performance with
non-blocking I/O.

• Relies on third-party
packages for features like
authentication.

• Requires more effort for
building admin panels.

Alternative Solution Analysis
Frontend Alternatives

Pros: Cons:

React.js • Component-based
architecture allows reusable
code.
• Great for building dynamic
and interactive UIs.
• Strong community support.

• Steeper learning curve for
beginners.

• Requires state
management libraries
(e.g., Redux) for larger
applications.

Vue.js • Simpler syntax compared
to React.
• Combines the best features
of Angular and React.
• Easy to integrate into
existing projects.

• Smaller community and
fewer plugins than React.
• May not be ideal for highly
complex applications.

Alternative Solution Analysis
Database Alternatives

Pros: Cons:

PostgreSQL • Advanced features like
JSON support and full-text
search.
• Better handling of complex
queries.

• Slightly more resource-
intensive than MySQL.

MongoDB • NoSQL database with high
flexibility for unstructured
data.
• Scalability for large
datasets.

• Not suitable for complex
relational data.

• Requires additional effort
to enforce data
consistency.

Alternative Solution Analysis
Authentication Alternatives

Pros: Cons:

OAuth2 • Standardized protocol with
widespread adoption.
• Easy integration with third-
party login providers like
Google or Facebook.

• Slightly more complex
setup compared to JWT.

Session-Based
Authentication

• Simple to implement with
Django's default setup.
• No token management
required.

• Less suitable for API-based
architectures.
• Requires server-side
storage for sessions.

Project

Design

Example: Fig.2. Website Wireframe Products Page

• Develop Wireframes
for Pages:

Design the layout for
the homepage, product
details page, cart, and
checkout page.

• Draft a Sequence
Diagram:

Visualize the process for
placing an order.

During the Project
Design stage, we:

Example Fig1. Initial ER diagram

• Created Use Case Scenarios:

Example: "A customer browses products and adds
items to their cart."
Example: "An admin updates stock for an existing
product."

• Designed an ER Diagram:

Included entities like User, Product, Order, Cart,
and the relationships between them.
Built a Use Case Diagram:

Showed the interactions between actors (Users,
Admins) and the system.

• Built a Use Case Diagram:

Showed the interactions between actors (Users,
Admins) and the system

Application Key Features:

• Models: CustomUser, Product, Cart, CartItem, Order,
OrderItem, Category, Payment.

• Views: Provide RESTful APIs for registration, login, product
listing/details, cart management, and order processing.

• Serializers: Used for data validation and
serialization/deserialization.

• JWT Authentication: Secures the APIs with JSON Web
Tokens (JWT).

• Admin Interface: Allows admin to manage all models in a
user-friendly interface.

Development

Backend Development

The backend of the website is comprised of numerous serializers,

views, and models. We do not have time to cover this full

implementation as it was comprised of well over 400 lines of

code.

Backend Development

This is an example of a serializer that allows complex data to be

transitioned to native Python data types that are easily rendered

on a page.

Backend

Development

This is an example of a

view to obtain data and

post data to the database.

7 custom views were

developed to manage the

data transactions.

Backend

Development

This is an example of a

model that def ines the

database itself. When the

program runs this database

is created in MySQL

automatical ly. This is how

we generate the database in

an AWS EC2 similar to a

local machine.

Frontend Development

HTML pages are served using the Python Django render

framework allowing us to dynamically render pages from the

backend. The entire website is based on 4 HTML templates.

Frontend Development

Data is Posted and Pulled from the database using JavaScript to call the APIs. We

use this setup whenever we need to get or send data to and from the database.

For GET requests, once the data is obtained from the database, we utilize the DOM

to dynamically generate HTML content containing the data.

For POST request, we send data as JSON objects based on HTML data attributes

and based on the acual values contained in form fields.

Frontend Development
GET and POST requests examples

Frontend Development

For security purposes, most APIs require an authorization token

to access them. For demonstration purposes, this token is

stored in local storage when the user logs in and times out after

a given number of hours.

Frontend

Development:

User

Authentication

View to obtain key pair:

JavaScript to store token:

A call to an API using the token:

Frontend Development

Whenever we need to reference product ids such as when we

need to add them to the cart or when we want to display a

product details page, we reference the product id as either an

HTML data attribute connected to a button, or we pass the

product id to the URL that is connected to an API to display

product details.

Frontend

Development

Product IDs to reference speci f ic products in the HTML code:

Continued on next slide

The URL to navigate to dynamically generated

product pages based on product id.

Frontend

Development

The function to reference the

data attr ibutes stored in the

HTML button elements so the

correct item is always added to

the cart.

Development Questions?

Due to the amount of code and the complexity of the project, I

could not possibly explain all of the details in a few PowerPoint

slides. This was only a brief overview of the main backbone

functions of the website.

If you have any questions about the details of the development

or the design of this project, please reach out for a more

detailed explanation.

Integration

and testing

Testing Process in E-Commerce Project

Objective: Ensure the application meets functional and non-functional
requirements.

Testing Methods Used:

Unit Testing Tested individual components like product addition, cart
updates, and user login.

Integration Testing Validated API responses with frontend functionality to ensure
seamless communication between the frontend, backend, and
database

System Testing Simulated complete user workflows, such as browsing products,
adding to cart, and checking out.

Performance Testing Evaluated system response times under different loads to
identify bottlenecks.

Tools Used Browser Developer Tools, Postman, and Selenium.

Example of Test Case Report

 Title: Test Case: Add Product to Cart

Test Case ID TC001 - Add Product to Cart

Precondition User must be logged in and browsing the product
catalog

Description Verify that a user can add a product to their cart
successfully

Test Steps 1. Navigate to the product catalog.
2. Select a product and click "Add to Cart."
3. View the cart.

Expected Output Product is displayed in the cart with the correct
quantity and total price updated.

Actual Output Product added successfully; total price updated.

Status Pass

Screenshots:

Here we have

given all the

mandatory details

and trying to sign

up. We need to

sign up (create

account)

As per our expected result, we can create an account. So, the testcase got passed.

Screenshot of scenarios and testcases

Implementation

Setting Up the EC2

Instance

• Deployed an EC2 instance running

Ubuntu 20.04.

• Conf igured security group rules - Opened

ports: 22 (SSH), 80 (HTTP), and 443

(HTTPS).

• Connected to the instance via SSH to

begin setup.

• Cloned the project repository to the EC2

instance

Configuring the

Django Environment

• Created an .env f i le for

environment-specific settings:

• Installed project dependencies

using pip

• Migrated the database schema

Creating a Superuser

and Populating the

Database

• Created a superuser for admin

access

• Logged into the Django admin

panel at

http://44.202.200:8000/admin to

populate the database

Configuring the

Database

• Instal led and secured MySQL

• Conf igured the MySQL database

• Verif ied the database connection

using the .env f i le and updated

Django sett ings

Setting Up Gunicorn

• Gunicorn systemd service

f ile

• Started Gunicorn service

Setting Up NGINX

• NGINX configuration f ile

• Restarted NGINX

Testing and

Finalization

Verif ied the deployment:

• Accessed the application via

http://44.202.9.200.

• Tested core features: user

authentication, product browsing,

cart management, and order

placement.

http://44.202.9.200

Code and Webpage Screenshots

This section includes some random screenshots of the code and

it shows some of the various webpages of the site. We wanted

to include this section to display some of the tools, code, and

pages that helped to make and make up this site.

If you would like to visit our site it is available at this URL,

http://44.202.9.200:8000/store /index.html

http://44.202.9.200:8000/store/index.html

Evaluation and

Future Work

The final product of our project, the E-Commerce Application eKart, is a
robust and scalable platform designed to simplify online shopping for users
and support small businesses. The platform incorporates key features that
provide a seamless shopping experience while ensuring user data security

Key Functionalities Developed:

• Users can register, log in, and securely manage their accounts.
• Admins can add, update, and delete products, including managing stock

and pricing.
• A fully functional cart allows users to add, update, and remove items, with

total prices calculated dynamically.
• Users can place and track orders.
• The platform supports responsive web design, ensuring compatibility

across devices.
• The backend is secured with JWT-based authentication, providing role-

based access control for admin features.
• A user-friendly interface ensures ease of navigation and accessibility for

users of varying technical expertise.

The e-commerce platform
successfully meets the
foundational requirements for a
secure and scalable online store.

It provides essential features like
user management, product
browsing, cart operations, and
order placement, all integrated
into a cohesive and responsive
system.

While the project has achieved its
core objectives, certain areas
require further attention

Enhanced User

Experience

Payment

Integration

Advanced
Search and

Filtering

Mobile
Optimization

Accessibility

Enhancements

Future Improvements

Improving Scalability • Implement load balancing and caching

mechanisms to handle higher user traffic.
• Explore cloud hosting solutions for greater

flexibility and reliability.

Adding Features • Include wish lists, product reviews, and user
notifications.

• Develop analytics dashboards for admins to
track sales, inventory, and user engagement.

Enhanced Security Introduce two-factor authentication for users and
advanced encryption methods for sensitive data.

Automated Workflows Automate inventory updates and email
notifications for order status.

Integration with Third-
Party Tools

• Connect with social media platforms for user
authentication (e.g., OAuth2).

• Incorporate shipping and delivery tracking APIs
for a complete order fulfillment cycle.

Looking forward, several enhancements can extend the platform’s capabilities:

Thank You!

	Slide 1: E-commerce WebDevelopment
	Slide 2: Project Analysis
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Alternative Solution Analysis
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Project Design
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Development
	Slide 22: Backend Development
	Slide 23: Backend Development
	Slide 24: Backend Development
	Slide 25: Backend Development
	Slide 26: Frontend Development
	Slide 27: Frontend Development
	Slide 28: Frontend Development GET and POST requests examples
	Slide 29: Frontend Development
	Slide 30: Frontend Development: User Authentication
	Slide 31: Frontend Development
	Slide 32: Frontend Development
	Slide 33: Frontend Development
	Slide 34: Development Questions?
	Slide 35: Integration and testing
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Implementation
	Slide 42: Setting Up the EC2 Instance
	Slide 43: Configuring the Django Environment
	Slide 44: Creating a Superuser and Populating the Database
	Slide 45
	Slide 46: Configuring the Database
	Slide 47: Setting Up Gunicorn
	Slide 48: Setting Up NGINX
	Slide 49: Testing and Finalization
	Slide 50
	Slide 51: Code and Webpage Screenshots
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Evaluation and Future Work
	Slide 63
	Slide 64
	Slide 65
	Slide 66

