E-commerce

SOUTHEAST MISSOURI

WebDevelopment SO 3

- Kyle Schwartz \
Team Leader, L (TTT
Front End Developer \ AL =
« Sai Ram Ankata BRERH g

Backend Developer I =y = et =
. Vira Vasylevska N Ly S e | |
Cloud Application Developer
- Brenden Dane
Database Developer
- Teja Reddy Palle
QA Specialist
* Yijun Liu —
Cloud Security Specialist CS 506 Distributed
Cloud Computing

Project
Analysis

Motivation

The rapid growth of e-commerce has created a high demand for efficient and user-
friendly platforms, yet many small businesses face challenges in establishing an online
presence due to limited technical expertise. Recognizing this gap, we aim to develop a
scalable e-commerce solution that enhances the shopping experience for users while
supporting small businesses.

Problems We Aim to Solve:

Accessibility User Experience Scalability

What We Hope to Achieve:

o A fully functional, visually appealing e-commerce website.
e Hands-on experience with Django and cloud-based database integration.

e An impactful solution that bridges the gap between small businesses
and online commerce.

Project Objectives

I.

SDLC Model

Gathering

Understand the project objectives and
gather user requirements.

Identify the key features: user
authentication (login/signup), product
listing, product details, cart, checkout, and
order confirmation.

Document user needs, such as a user-
friendly interface and secure payment
handling for future enhancements.

I1. Planning

Define the project scope, timeline, and
deliverables.

Assign roles within the team (e.g., front-
end, back-end, database integration).
Select tools and technologies: HTML, CSS,
JavaScript for the front end, Python
Django for the back end.

Evaluation

Maintenance

Deployment

Gathering

Testing

Planning

System Design

Development

SDLC Model

III. System Design:

« Create wireframes for the user interface (UI)
design of the website.

« Define the layout for pages like login, sign-
up, product details, cart, and checkout.

« Design the database schema for storing user
information, product details, and orders.

IV. Development
Front-End Development:

« Implement responsive UI using HTML,
CSS, and JavaScript.

« Develop pages such as Login, Sign-Up,
Product Listing, Product Details, Cart,
and Checkout.

Back-End Development:

« Use Python Django to build the server-
side logic and APIs.

« Integrate database models for users,
products, and transactions.

Evaluation

Maintenance

Deployment

Gathering

Testing

Planning

System Design

Development

SDLC Model

V. Testing

Perform unit testing for individual
modules (e.g., cart functionality, user
authentication).

Conduct integration testing to ensure
all components work together.

Test for usability, responsiveness, and
bug fixes.

VI. Deployment:

Deploy the e-commerce website to a
cloud platform or a local server.

Ensure the website is accessible to
end-users and performs well under
varying traffic conditions.

N —

intenance

SDLC Model

VII. Maintenance

Monitor website performance and fix
any bugs reported by users.

Update features based on user
feedback, such as adding more
payment methods or enhancing the UL.
Implement regular security updates to
protect user data.

VIII. Evaluation

Gather user feedback post-deployment
to evaluate the success of the project.
Analyze the performance metrics and
identify areas for improvement.

Prepare for scaling the system to
handle additional features or higher
traffic.

Evaluation

Maintenance

Deployment

Gathering

Testing

Planning

System Design

Development

Functional Requirements

User Management
Product Management
Cart Management
Order Management
Checkout Process

Session Management

The e-commerce website provides secure User Management, allowing
users to register, log in, reset passwords, and for admins to manage
products.

Product Management lets admins define product details like name,
price, and stock, while users can browse and view product information.

In Cart Management, users can add, adjust, or remove items, with the
cart automatically calculating the total price.

Order Management enables users to place orders, track details like
prices and dates, and review their order history.

The Checkout Process is simple, with future plans for payment
integration.

Finally, Session Management ensures secure, uninterrupted access
until users log out or their session expires.

Non-Functional Requirements

The app need to have fast performance, with pages loading in 2-3 seconds and features
like the cart updating in real time. It also needs to be scalable, so it can handle at least
1,000 users at the same time and support growth as the platform expands.

Security is critical, requiring user data, like passwords, to be encrypted, and the site must
use HTTPS for secure communication. Role-based permissions will be used to control admin
access. The system must also be reliable, with 99.9% uptime and quick recovery in case of
ISssues.

We want the website to be easy to use, with a simple, mobile-friendly design that works on
different devices and browsers (like Chrome, Safari, and Edge). Accessibility is also
important, so we'll follow standards like WCAG, offering features like high-contrast mode
and text resizing.

Finally, we’ll make sure the code is well-organized and documented for future updates
and maintenance.

Alternative
Solution
Analysis

Backend (Django Framework)

The backend is built using Django and Django REST Framework (DRF)
to manage authentication, product management, user accounts, cart
operations, order processing, and payment handling.

Frontend (HTML, CSS, JavaScript)

Provides an interactive user interface for customers to browse products,
manage carts, and place orders.

The chosen stack balances:
v Scalability

v' Security

v' Ease of use

Alternative Solution Analysis
Backend Alternatives

Flask (Python)

Express.js (Node.js)

Pros:

Lightweight and
minimalistic.

Ideal for smaller projects
with fewer dependencies.
Easier to set up for
custom APIs.

Fast and efficient for real-
time applications.

Large ecosystem of
plugins and tools.

High performance with
non-blocking I/0.

Cons:

Requires more manual
setup for features like
authentication.

Less out-of-the-box
support for admin
interfaces compared to
Django.

Relies on third-party
packages for features like
authentication.

Requires more effort for
building admin panels.

Alternative Solution Analysis
Frontend Alternatives

React.js

Vue.js

Pros:

« Component-based
architecture allows reusable
code.

 Great for building dynamic
and interactive Uls.

« Strong community support.

« Simpler syntax compared
to React.

« Combines the best features
of Angular and React.

» Easy to integrate into
existing projects.

Cons:

« Steeper learning curve for
beginners.

« Requires state
management libraries
(e.g., Redux) for larger
applications.

« Smaller community and
fewer plugins than React.

« May not be ideal for highly
complex applications.

Alternative Solution Analysis
Database Alternatives

PostgreSQL

MongoDB

Pros: Cons:

« Advanced features like « Slightly more resource-
JSON support and full-text intensive than MySQL.
search.

« Better handling of complex

queries.

« NoSQL database with high + Not suitable for complex

flexibility for unstructured relational data.
data. « Requires additional effort
« Scalability for large to enforce data

datasets. consistency.

Alternative Solution Analysis
Authentication Alternatives

OAuth2

Session-Based
Authentication

Pros:

« Standardized protocol with
widespread adoption.

« Easy integration with third-
party login providers like
Google or Facebook.

« Simple to implement with
Django's default setup.

* No token management
required.

Cons:

Slightly more complex
setup compared to JWT.

* Less suitable for API-based
architectures.

« Requires server-side
storage for sessions.

) File Edit Selection View Go Run Terminal Help =

@ EXPLORER

~ C5506
~ backend
v store
%@ admin.py
® apps.py
% models.py
® serializers.py
® testspy
® urls.py
® views.py
v templates
<> cart.html
<> index.html
gin.html
> productdetails.html
<» signup.html
@ manage.py
~ Website
> images
¢ carthtml
index.html
¢ login.html
¢ productdetails.html
15 scripts
¢ signup.html
style.css
v Wireframes

iz Website Wireframe Cart Page.png

i Website Wireframe Product Details...

X Website Wireframe Products Page....

.gitignore

= requirements.bet

> OUTLINE
> TIMELINE
8 main & ®odo Wo

& Website Wireframe Products Pagepng X

Wireframes > & Website Wireframe Products Page.png

company logo

2 cs506

Products

product
image

product
image

product
image

Product Title

Price

Product Title

Price

Product Title

Price

product
image

product
image

product
image

Product Title

Price

Product Title

Price
Qty

Product Title

Price

Example: Fig.2. Website Wireframe Products Page

During the Project
Design stage, we:

« Develop Wireframes
for Pages:

Design the layout for
the homepage, product
details page, cart, and
checkout page.

« Draft a Sequence
Diagram:

Visualize the process for
placing an order.

USER
int UseriD PK
tring | Nam:
tring | Email
tring | Pas d
owns
places
ORDER
CART in OrderlD PK
int | CartlD | PK in UseriD FK
int | UseriD | FK date | OrderDate
‘ float | TotalAmount
|
contains includes has
— ORDER_ITEM ‘
CART_ITEM PAYMENT
int OrderitemiD | PK
int | CartitemiD | PK int PaymentiD PK
int OrderlD FK
int | CartlD FK int OrderlD FK
int ProductiD FK
int | ProductiD | FK float | AmountPaid
int Quantity
int | Quantity date | PaymentDate
float | Price
references references
PRODUCT
in ProductiD PK
string | Name
strin Description
floa Price
in StockQuantity

Example Figl. Initial ER diagram

« Created Use Case Scenarios:

Example: "A customer browses products and adds
items to their cart.”

Example: "An admin updates stock for an existing
product.”

« Desighed an ER Diagram:
Included entities like User, Product, Order, Cart,
and the relationships between them.

Built a Use Case Diagram:

Showed the interactions between actors (Users,
Admins) and the system.

« Built a Use Case Diagram:

Showed the interactions between actors (Users,
Admins) and the system

Application Key Features:

Models: CustomUser, Product, Cart, Cartltem, Order,
Orderltem, Category, Payment.

Views: Provide RESTful APIs for registration, login, product
listing/details, cart management, and order processing.

Serializers: Used for data validation and
serialization/deserialization.

JWT Authentication: Secures the APIs with JSON Web
Tokens (JWT).

Admin Interface: Allows admin to manage all models in a
user-friendly interface.

Development

"selection
_Ob-selec:: ;he end -add |
 ob.select=1
Mntext.scene.objects.actiw
W "Selected” + str(modifies .“
#eirror ob.select = 0
bpy - context.selected_objs
gata.objects[one.name].sels

rint("please select exacthy "%

. OPERATOR CLASSES ===°

or):
?r’z:at 1):he selected WS

ypes .
i

Backend Development

The backend of the website is comprised of numerous serializers,
views, and models. We do not have time to cover this full
implementation as it was comprised of well over 400 lines of
code.

Backend Development

This is an example of a serializer that allows complex data to be
transitioned to native Python data types that are easily rendered
on a page.

class CartItemSerializer(serializers.ModelSerializer):
product_name = serizlizers.CharField{source="product.title")
product price = serializers.DecimalField(source="product.price’, max_digits=18, decimal places=2)
total price = serializers.SerializerMethodFisld()
image = serializers.ImageField(source="product.image’, read only=True)

class Meta:
model = CartItem
fields = ['id', "product’, 'product _name', "quantity’, 'product price’, 'product_id', 'total price’', 'image’]

def get total price(self, obj):
return obj.product.price * obj.quantity

class CartAPIView(APIView):
permission classes = |

def

def

IsfAuthenticated]

get(self, reguest):

Get or create the cart for the logged-in user

cart, created = Cart.objects.get or create(user=request.user)
serializer = CartSerializer(cart)

return Response(serializer.data)

post(self, reguest):

Add a product to the cart

product_id = request.data.get(' product _id")
quantity = request.data.get('quantity’, 1)

try:
product = Product.objects.get(id=product_id)
except Product.DoesNotExist:
return Response{{"error”: "Product not found"}, status=status.HTTP_ 454

Get or create the cart for the logged-in user
cart, created = Cart.objects.get or create(user=request.user)

Check if the product already exists in the cart
cart_item, created = CartItem.objects.get or create(cart=cart, product=product

if not created:

It the product is already in the cart, update the quantity
cart_item.quantity = quantity

cart_item.save()

return Response{CartSerializer(cart).data)

Backend
Development

This is an example of a
view to obtain data and
post data to the database.
/ custom views were
developed to manage the
data transactions.

class CustomUser(AbstractlUser):
phone_number = models.CharFisldi{max_length=15, blank=True, null=True)
address = models.TextField(blank=True, null=True)

def str (self):
return self.username

class Product{models.Model):
title = models.CharField(max_ length=28&)
description = models.TextField()
price = models.DecimalFiseld(max_digits=18, decimal places=2)
stock = models.PositivelntegerField() # MNumber of items available
image = models.ImageField(upload to="products/') # Product image
created at = models.DateTimeField{auto now add=True)

def str (self):
return self.title

class Cart{models.Model):
user = models. OneToOneFisld('CustomUser', on_delete=models.CASCADE, related name='cart
created_at = models.DateTimeField{auto_now_add=True)

def str (self):
return f"Cart for {self.user.username}”

class CartItem{models.Model):
cart = models.ForeignKey(Cart, related name="cart items', on_delete=models.CASCADE)
product = models.ForeignKey(Product, on_delete=models.CASCADE)
quantity = models_PositiveIntegerField(default=1)

def str (self):
return f"{self.quantity} of {self.product.title}”

Backend
Development

This is an example of a
model that defines the
database itself. When the
program runs this database
is created in MySQL
automatically. This is how
we generate the database in
an AWS EC2 similar to a
local machine.

Frontend Development

HTML pages are served using the Python Django render
framework allowing us to dynamically render pages from the
backend. The entire website is based on 4 HTML templates.

def signup(request): def uiew_cart(request)ﬂ
template = "signup.html’ | return render(request, ‘cart.html’)

return render(request, template) def index(request):

Define a view function for the login page template = 'index.html'

def login_page(request): return render(request, template)
return render(request, 'login.html")

Define a view function for the login page
def product details(request):
return render(request, 'productdetails.html’)

Frontend Development

- Data is Posted and Pulled from the database using JavaScript to call the APIs. We
LG use this setup whenever we need to get or send data to and from the database.

For GET requests, once the data is obtained from the database, we utilize the DOM

to dynamically generate HTML content containing the data.

For POST request, we send data as JSON objects based on HTML data attributes

and based on the acual values contained in form fields.

Frontend Development
GET and POST requests examples

// Fetch products from the backend and display them // Manage the signup form information
fetch('/store/api/preducts/", {

const signUpForm = document.querySelector('.sign-up');
method: 'GET’, gnup query (gn-up’)

head?rs: { L .)) . f/ If a signup form class is found add an event listener to the form
Content-Type': ‘application/json’, if (signupForm) {
‘Authorization’: 'Bearer ' + localStorage.getItem('token’), * enip) . . . L
} document.querySelector('form’).addEventListener(submit’, (event) => {
}; event.preventDefault(); // Prevent default form submission

.then(response =»> response.json())

.then(products => {
const productGrid = document.querySelector('.product-grid');
cartCount=8

const formData = new FormData(event.target);
const data = Object.fromEntries(formData.entries());

productGrid.innerHTML = *"; // Clear any existing content fetch('/store/api/register/’, {
method: 'POST",

products.forkach(product =» { headers: {

const productDiv = document.createElement('div'); 'Content-Type': "application/json’

productDiv.classList.add(product’); T,

cartCount+=product.quantity; body: JS0M.stringify(data)

H
productDiv.innerHTHML = ~ .then(response =» response.json())

<div class="img-container” onclick="location.href="productdetails.html?id=%{product.id}";">
|

<fdiv>

<h3»${product.title}</h3»

<p»Price: $${product.price}</p>

<p>Quantity in stock: <span id="stock-%{product.id}"»${product.stock}</spans></p>

.then(response =» {
if (response.success) {
// Failed registration
const modal = document.getElementById('modal’);
const modalMessage = document.getElementById('modal-massage’);

<div class="quantity-actions”> modalMessage.textContent = 'Registration failed. Please check the form and try again.’;
<button class="decrement"»-</button> modal.style.display = "block’;
<input class="quantity” type="number” value="1" min="1" id="quantity-${product.id}"> Telse {
<button class="increment"»+</button> // Successful registration
¢/divy const modal = document.getElementById('modal’);
<button class="add-to-cart" data-id="$%{product.id}"»Add To Cart</button» const modalMessage = document.getElementById('modal-message’);
; modalMessage.textContaent = 'Registration successful! You can now log in.';
modal.style.display = "block’;
productGrid.appendChild(productDiv); ¥

R - H

Frontend Development

For security purposes, most APIs require an authorization token
to access them. For demonstration purposes, this token is
stored in local storage when the user logs in and times out after

a given number of hours.

View to obtain key pair:

class MyTokenObtainPairView(TokenObtainPairview):
def post(self, request, *args, **kwargs):
username = request.data.get(username’)
password = request.data.get(password’)

user = authenticate(reguest, username=username, password=password) F ro n t e n d

if user is not None:
login{request, user)
return super().post(request, *args, **kwargs)

else;etur‘r‘ Response({'detail’: 'Invalid credentials’}, status=status.HTTP_481_UNAUTHORIZED) D eve I o p m e n t :
JavaScript to store token: User

fetch('/store/login/", {

method: "POST',

headers: { = =
A uthentication

Fa
body: JS0M.stringify(data)
})

.then(response => response.json())

.then(response =» {

localStorage.setItem('token', response.access);

localStorage.setItem('username’, document.getElementById("usernams-field").value);
window.location.href = "/store/index.html™;

A call to an API using the token:

fetch('/storefapi/cart/’, {
method: '"GET',
headers: {
"Content-Type': ‘applications/json’,
"futhorization': 'Bearer ' + localStorage.getItem(token®),
I
1)

Frontend Development

Whenever we need to reference product ids such as when we
need to add them to the cart or when we want to display a
product details page, we reference the product id as either an
HTML data attribute connected to a button, or we pass the
product id to the URL that is connected to an API to display
product details.

Product IDs to reference specific products in the HTML code:

.then{products =» {
const productGrid = document.guerySelector('.product-grid'});
cartCount=6

productGrid.innerHTML = ""; // Clear any existing content

products.forEach{product =» {
const productDiv = document.createElement('div');
productDiv.classList.add("product’);

cartCount+=product.quantity;

productDiv.innerHTML = ~

<div class="img-container"” onclick="location.href="productdetails.html?id=%{product.id}" ;">
|
</div»
<h3»${product.title}</h3>»
<p>Price: $%{product.price}</p>
<p»Quantity in stock: 3{product.stock}</p>
¢div class="quantity-actions">
<button class="decrement”>-</button:>
<input class="quantity" type="number" value="1" min="1" id="quantity-${product.id}">
<button class="increment">+</button>
</div»
<button class="add-to-cart” data-id="%${product.id}"»add To Cart</button>

The URL to navigate to dynamically generated
product pages based on product id.

path('api/product/<int:id»/", ProductDetaildPIView.as_view(), name='product_detail’),

Frontend
Development

Continued on next slide

function initializeAddToCartActions() {
const addToCartButtons = document.gquerySelectorAll(’.add-to-cart');

addToCartButtons.forEach(button => {
button.addEventlistener('click', () =» {
const productId = button.getAttribute('data-id");
const quantityInput = parseInt(button.parentElement.querySelector(’.quantity’).value);
console. log{quantityInput);
ffconst newQuantity = parseInt(quantityInput.value);

JE

Frontend
if (isNaN(newQuantity) || newQuantity < 1) {
Ez:iii?.er‘mr(Invalid quantity'); D eve I 0 p m e n t

}
*f
const data = { The function to reference the
duct_id: ductId, . .
hontiny: quontityTnput data attributes stored in the
b | HTML button elements so the
/f Send the updated gquantity to the server]]
fetch(" /storefapi/cart/™, { correct item iIs always added to
mathod: 'POST',
headers: | the cart.
"Content-Type': 'application/json’,
"Authorization': 'Bearer ' + localStorage.getItem('token'),

.
I
body: JSON.stringify(data)

1)

.then({response =» response.json())

.then{updatedProduct => {
console. log("Product updated:', updatedProduct);
f/const stockDisplay = document.getElementById(stock-${productId}”);
f/stockDisplay.textContent = updatedProduct.quantity; // Update the displayed stock quantity
f/location.reload();

1)

.catch{error =» {
console.error('Error updating product:’, error);

j3H

1

1);

Development Questions?

Due to the amount of code and the complexity of the project, I
could not possibly explain all of the details in a few PowerPoint
slides. This was only a brief overview of the main backbone

functions of the website.

If you have any questions about the details of the development
or the design of this project, please reach out for a more
detailed explanation.

Integration
and testing

Testing Process in E-Commerce Project

Objective: Ensure the application meets functional and non-functional

requirements.

Testing Methods Used:

Unit Testing

Integration Testing

System Testing
Performance Testing

Tools Used

Tested individual components like product addition, cart
updates, and user login.

Validated API responses with frontend functionality to ensure

seamless communication between the frontend, backend, and
database

Simulated complete user workflows, such as browsing products,
adding to cart, and checking out.

Evaluated system response times under different loads to
identify bottlenecks.

Browser Developer Tools, Postman, and Selenium.

Example of Test Case Report

Title: Test Case: Add Product to Cart

Test Case ID

Precondition
Description

Test Steps

Expected Output

Actual Output
Status

TCO0O01 - Add Product to Cart

User must be logged in and browsing the product
catalog

Verify that a user can add a product to their cart
successfully

1. Navigate to the product catalog.
2. Select a product and click "Add to Cart."
3. View the cart.

Product is displayed in the cart with the correct
quantity and total price updated.

Product added successfully; total price updated.
Pass

Screenshots:

Repeat Password

Sign Up

Here we have
given all the
mandatory details
and trying to sign
up. We need to
sign up (create
account)

As per our expected result, we can create an account. So, the testcase got passed.

Screenshot of scenarios and testcases

& - 0 x

ﬂ AutoSave @ [Fé z) ~ = E-commerce FinalProject Testingsheet DCC C... o -« Last Modified: 8m ago v p Search

File Home Insert Pagelayout Formulas Data Review View Automate Developer Help | I Comments ‘
~AY & Insert ~ v A
D & ‘Aptos Narrow vH11 v| A A L | ?E} Wrap Text ‘General V‘ @ @ @ = 2 Z? /O E}
[@ v R . BX Delete v v . N
Paste B I U~ . & A . = = Merge & Center $.9 9 G0 0 Condltlpnal Formatas Cell - S_orl & Find & Add-ins Analyze
~ & - Formatting v Table ¥ Styles v [Format v & ~ Filterv Select v Data
Clipboard] Font [Alignment [Number [Styles Cells Editing Sensitivity Add-ins e
D9 v Ix v
A B < D E F G H | J K a
1 SINo User Story Testcase Id Testcase type Testcase name Testcase Description Pre requisites Input data Steps to execute expected output Actual Output
Firstname- super Given the url
N . . 3 P) When User enters the data which is
. . L User can able to signup Data like Name(first. |Lastname - user . .
- N o Signup without giving . L T . mandatory A new account with A new account with
1 Signup TC001 Positive . without giving the optional | last).username, email, [username - superuser
= optienal data R . . And clicks Signup given data is created given data is created
data password email - superuser@gmail. com =
) Then User can able to create an
password - 1234
2 account
Given the url
Firstname- super ‘When User enters the data which is . B
. . L . . " A new account with A new account with
. . Signup without gi User cannot signup without | Data like Name(first. |Lastname - user mandatory except 1 data field
2 Signup TC002 Negative = = L =) . B)) given data will not be | given data will not be
= = all mandatory data giving the mandatory data | last). email. password |email - superuser@gmail.com And clicks Signup = created = created
password - 1234 Then User cannot able to create an
g account
Given the url
User can able to signup by | User gives characters in Whe:; }JSH enters the data which is A new account with A new aceount with
3 Signup TCO003 Positive Testing phone number | giving characters instead of | place of integers for |Phone Number - asdfghjkl mandatory.
- N s L . i N And clicks Signup given data is created given data is created
integers, as it is optional. phone number = = =
Then User can able to create an
4 account
Given the url
SN - R ‘When User enters credentials
. . Login using correct |User can able to login using user needs his username- superuser) N
4 Login TC004 Positive . . § And clicks submit User can able to login | User can able to login
= credentials the correct credentials credentails password - 1234 B B
Then User can able to login to his
5 account
Given the url
) o User cannot able to login . ‘When User enters incotrect
. . Login using incorrect User enters incorrect |username- superuser) User cannot see any User cannot see any
5 Login TC005 Negative . using the incorrect) credentials
credentials credentials password - 1ABec) . products products
credentials And clicks submit
6 Then User cannot see any products
Given the user profile
‘When User selects the items
6 adding Products TCo0s Positive Adding products to User canable to add the User loggefﬂ into his |username- superuser And clicks .add to cart after selecting User c‘an see products | User c:am see products
= cart products to the cart. profile password - 1234 number of items in the cart in the cart
Then User can find the items in the
7 cart
8
9| 1
10 v
Sheet1 ® HEE | »
Ready [® {7 Accessibility: Good to go ics) m — ——+ 85%

(1

Search

Z®o0omo

ENG
IN

> Q) @

10:11 PM
12/7/2024

Implementation

Setting Up the EC2
Instance

« Deployed an EC2 instance running
Ubuntu 20.04.

« Configured security group rules - Opened
ports: 22 (SSH), 80 (HTTP), and 443
(HTTPS).

e Connected to the instance via SSH to
begin setup.

« Cloned the project repository to the EC2
instance

git clone https://github.com/brdane/CS506.git

cd €S506/project/CS506

Configuring the
Django Environment oo

pip install -r requirements.txt
python manage.py migrate

« Created an .env file for
environment-specific settings:

« Installed project dependencies
using pip *0 9O

- Migrated the database schema DB_NAME=ekart
DB_USER=cart_user

DB_PASSWORD=cart_pass
DB_HOST=localhost
DB_PORT=3306

Creating a Superuser
and Populating the

Database
N N
- Created a superuser for admin python manage.py createsuperuser
dCCesSS

Logged into the Django admin
panel at
http://44.202.200:8000/admin to
populate the database

€ 2> C [A Notseure 44.202.9.200:8000/admin/ % € > C M A Notseure 442029.200:8000/admin/store/product/ 4

oo . = . 5 e
88 | @ = & [@respot @ [ReplaceYourPytho.. @ Commitand pushc.. € GitHub -jlevy/the-a.. § Using DRF Effectivel.. () GitHub - InterviewR.. = python - Filtering D 88 | €@ = & [EPassport =g [OJ ReplaceYourPytho.. @ Commitand pushc..) GitHub - jlevy/the-a.. § Using DRF Effectivel.. () GitHub - InterviewR.. = python - Filtering Dj.

Django administration i Django administration WELCON

. . . Home > Store » Products
Site administration » > Prod

Start typing to filter..

AUTHENTICATION AND AUTHORIZATION) _ Select product to change
Recent actions HENTICATION AND AUTHORIZATION

Groups +add # Change

Groups + Add Action: | —oooee v/ Go | 0of4selected
My actions
O propuct
Product
Cartitems +Add # Change c + Add o smarphone
+ Laptop Computer artitems o
e k] > Change — e + add Laptop Computer
Categorys +Add # Change v Ei';j(r:a Cotegorys - O Banana
- 3 D
Order items *+Add # Change + Apple Order items + Add Frele
. Product
Orders +Add # Change € orders * Add 4 products
Payments *+add # change Payments + Add
Product categorys +add # Change Product categorys + Add
Products +Add # Change Products + Add

Users +Add # Change Users + Add

- . sudo apt update
Conflgurlng the sudo apt tnstall mysql-server
Database sudo mysqgl_secure_1installation

« Installed and secured MySQL
« Configured the MySQL database

« Verified the database connection
using the .env file and updated
Django settings

CREATE DATABASE ekart;

CREATE USER 'cart_user'@'localhost' IDENTIFIED BY 'cart_pass';
GRANT ALL PRIVILEGES ON ekart.* TO 'cart_user'@'localhost’';
FLUSH PRIVILEGES;

[Unit]
Description=gunicorn daemon for Django project
After=network.target

[Service]

User=ubuntu

Group=www-data

WorkingDirectory=/home/ubuntu/project/CS506/backend
ExecStart=/home/ubuntu/project/CS506/venv/bin/gunicorn --workers 3 --bind
unix:/home/ubuntu/project/CS506/backend/gunicorn.sock ekart.wsgi:application

[Install]
WantedBy=multi-user.target

Setting Up Gunicorn

« Gunicorn systemd service
v XX
file

sudo systemctl start gunicorn
sudo systemctl enable gunicorn

« Started Gunicorn service

listen 80;
server_name 44.202.9.200;

u
Setting Up NGINX
alias /home/ubuntu/project/CS506/backend/staticfiles/;

ion /media/ {
alias /home/ubuntu/project/CS506/backend/media/;

« NGINX configuration file
« Restarted NGINX ton / {

proxy_pass http://unix:/home/ubuntu/project/CS506/backend/gunicorn.sock;
proxy_set_header $host;

proxy_set_header $remote_addr;

proxy_set_header $proxy_add_x_forwarded_for;

}

error_log /var/log/nginx/error.log;
access_log /var/log/nginx/access.log;

sudo systemctl restart nginx

Testing and
Finalization

Verified the deployment:

Accessed the application via
http://44.202.9.200.

Tested core features: user
authentication, product browsing,
cart management, and order
placement.

http://44.202.9.200

Co e (o N E— ws s00l s o CEEED

10 9 3 Eruwon ¢ (waevusm. @ Comtanspanc, () GiHub Joymes. ¥ Using 08 fecel () Gibb - imevewd. 4 python - Fenng 0y [MowtoUpkagdna. | £ A Boskmanes

. - logout SignUp Cat [N

Products

— _—
Apple Banana Laptop Computer
Price: $0.50 Price: $0.25 Price: $325.00

Quantity in stock: 83 Quantity in stock: 118 Quantity in stock: 42

| H B K |

SHp s

[. !

= 2 @0 & o R

€ 3 C @ ANetsawe 4420292008000/50r0

B0 = i Erect o Orescwenm. @ -1 . O Gitwb - Interview. 2 gytron - Fitermg 05[] How %o Upiosd And.. » | [A1 Bockmerks
Logo Logout SignUp Cart
Cart
Laptop Computer sagg Subtotal: $325
Shipping: $10

{ ; Product ID: 3
Total: $335
Quanity: 1
P — [o
=0 =

© Company Name

Code and Webpage Screenshots

This section includes some random screenshots of the code and
it shows some of the various webpages of the site. We wanted
to include this section to display some of the tools, code, and
pages that helped to make and make up this site.

If you would like to visit our site it is available at this URL,
http://44.202.9.200:8000/store/index.html

http://44.202.9.200:8000/store/index.html

v i3 Dashboard X +
< & 25 canvas.semo.edu
) File Edit Selection View Go Run
@ EXPLORER
~ C5506
> wvenv
~ backend
Account S ekart
@ 4 > media
Dashboard ~ staticfiles
> images
cartjs M
Courses login,js
script_index.js M
&{L script_productdetails.js
Groups scripts M
style.css
> store
Calendar > templates
@ manage.py
@ > Website
Inbox > Wireframes
& env
® € .gitignore
History

)(

A s53F
% Light rain

requirements.txt

> OUTLINE
> TIMELINE
Pmaint & @oA0o @Wo &

Terminal Help < =2

SO 5506

scriptjs M X

backend > staticfiles > scriptjs > @ addEventListener('submit’) callback

135
136 // Update the cart quantity span element in the nav section
137 function displayCartQuantity() {

138 fetch('/store/apifcart/", {

139 method: 'GET',

140 headers: {

141 ‘Content-Type': ‘application/json’,

142 ‘Authorization': 'Bearer ' + localStorage.getItem('token'),
143 1,

144 1)

145 .then(response => response.json())

146 .then(data => {

147 let totallitems = @;

148 data.cart_items.forEach(item => {

149 totalItems += item.quantity;

150 1

151 document.getElementById('cart-count').textContent = totalItems;
152 1)

153 .catch(error => {

154 console.error('Error fetching cart data:', error);
155 1F

156 }

157 displayCartQuantity();

158

159

160

161

162 [/ Manage the signup form information

A A P e PR At B P T T P P T AL N e LB
PROBLEMS ~ OUTPUT DEBUG CONSOLE

TERMINAL PORTS

PS C:\Users\kyboo\Desktop\Kyle College\Fall 2024\CS506\Group Project\CS506>

== Q. Search

Ln 167, Col 73 Spaces: 2

o z@BEOCEUOXN

[«
(]

bdpython A +~ M @ --- ~ X

UTF-8 CRLF

~

(=]

{} JavaScript

=) 9

@ Golive 0

7:40 PM
12/8/2024 -

wn

(M}
[«
@

<« & 2% canvas.semo.edu I ¢ F @©

ﬂ File Edit Selection View Go Run Terminal Help &« = ,OCSSOG U Q D] 08 - O X

EXPLORER P viewspy X >~ [0
v CS506 [3 B2 O & backend > store > @ views.py > @ view_cart
> wvenv 122

~ backend 123 .]
Account > ekart 124 class PlaceOrderAPIView(APIView):
125 permission classes = [IsAuthenticated]
> media 126
> staticfiles 127 def post(self, request):
~ store 128 # Get the user's cart
> _pycache_ 129 cart, created = Cart.objects.get or create(user=request.user)
: : 130
Courses ; m;g;anzr;s 131 if not cart.cart items.exists():
- 132 return Response({“error”: "Cart is empty"}, status=status.HTTP_4@@ BAD REQUEST)
@ admin.py 133
@ apps.py 134 # Create the order
@ models.py 135 order = Order.objects.create(user=request.user, total amount=@)
@ serializers.py M 136 |
@ tests.py 137 # Add cart items to the order
& urlspy 138 for cart_item in cart.cart_items.all():
: 139 order_item = OrderItem.objects.create(
149 order:ordep]
> templates 141 product=cart_item.product,
@ manage.py 142 quantity=cart_item.quantity,
> Website 143 price=cart_item.product.price L
> Wireframes 144)
8 eny 145 remaining_stock = cart_item.product.stock - cart_item.quantity
& gitignore 146 final stock = remaining_stock if remaining stock > @ else @
. 147 cart_item.product.stock = final stock
requirements.txt 148 cart_item,product.save()
149
PROBLEMS ~ OUTPUT DEBUG CONSOLE TERMINAL PORTS Python A +~ [W -+ ~ X
i OUTLINE PS C:\Users\kyboo\Desktop\Kyle College\Fall 2024\CS506\Group Project\CS506>
TIMELINE

X Pmant 3 ®0AD Ln 190, Col 8 ® Golive 0

r’_?fiznrftrain == Q Search _‘iﬁ_ L ﬁ $ - a @ Q U € 9 ~NO RDD 123!:;}5252&' ;

Spaces:4 UTF-8 CRLF {} Python

3.12.5 (.venv": venv)

v i3 Dashboard X +
&« C °% canvas.semo.edu =
] File Edit Selection View Go Run Terminal Help < =2 £ 8506
A
fan - -
5 EXPLORER < index.html X
el O
v CS506 [3 B2 O & backend > templates > < index.html > & html > & body > & script
S venv 1 <!DOCTYPE html>
v backend 2 <html lang="en"»
Account S ekart 3 <head> . i}
a , . 4 <meta charset="UTF-8">
D medis 5 <meta name="viewport" content="width=device-width, initial-scale=1.0">
Dashboard » staticfiles 6 <title>Products</title>
> store 7 {% load static %}
v templates 8 <link type="text/css" rel="stylesheet" href="{% static 'style.css' %}">
Courses <> cart.html o </head>
ondehimt [
e 11 <header>
ogin-ntm) 12 <div class="logo">»
¢ productdetails.html 13
¢ signup.html 14 </div>
® manage.py 15 <nav>
> Website 16 <I--{% if user.is_authenticated ¥}-->
S Wireframes 17 <l--<p>Welcome, {{ user.username }}!</p>-->
o 18 <I--{% endif ¥}-->
£env . .
N 19 <p id="user-greeting"></p>
® gitignore 20 Login
requirements.txt 21 Sign Up
22 Cart@</span»>
23 </nav>
24 </header>
25
26 <main>
27 <h1>Products</h1>
28
PROBLEMS ~ OUTPUT DEBUG CONSOLE ~ TERMINAL PORTS
> OUTLINE ;
PS C:\Users\kyboo\Desktop\Kyle College\Fall 2024\CS506\Group Project\CS506>
> TIMELINE
. ¥ Pmaint 3> ®0A0 @Wo £ Ln 54, Col 41
A 53F 1 | o s = i
% Light rain AN Q Search _‘iﬁ_ = ﬁ * = a @ e U @ n

[«
(]

bdpython A +~ M @ --- ~ X

Spaces:4 UTF-8

A D

CRLF HTML

2)

@ Golive [
737 PM
12/8/2024 g

v i3 Dashboard X +
<« c 2% canvas.semo.edu
) File Edit Selection View Go Run
/i
f -
] EXPLORER
e (O
v CS506 BELS
> wenv
~ backend
Account S ekart
m 4 > media
N taticfil
v staticfiles
Dashboard
> images
cartjs M
= - .
Courses login,js
script_index.js M
&{L script_productdetails.js
Groups scripts M
_sylecss

Calendar

53°F
E:

> store
> templates
@ manage.py
> Website
> Wireframes
& env
€ .gitignore

requirements.txt

» OUTLINE
> TIMELINE
X Pmant 3 ®0AD

Light rain

Terminal

Help & = £ 8506

stylecss X

backend > staticfiles > # style.css > 92 price

TRR J

164

165 .cart-items {

166 display: flex;

167 flex-direction: column;

168 gap: opx;

169 width: 8e%;

170 border: 2px solid [Olightgray;
171 margin-right: 1@px;

172}

173

174 .cart-item {

175 display: flex;

176 justify-content: space-between;
177 align-items: center;

178 border-bottom: 1px solid [#ddd;
179 padding: 1@px;

180 position: relative;

181 padding-bottom: 3epx;

182 }

183

184 .product-info {

185 display: flex;

186 align-items: center;

187 }

188

189 .product-info img {

190 width: 1eepx;

191 margin-right: 2epx;

PROBLEMS ~ OUTPUT DEBUG CONSOLE PORTS

TERMINAL

PS C:\Users\kyboo\Desktop\Kyle College\Fall 2024\CS506\Group Project\CS506>

] Q. Search

o z@BEOCEUOXN

Ln 219, Col 3

[«
(]

bdpython A +~ M @ --- ~ X

Spaces: 4 UTF-8

~ D

CRLF (SS

=) 9

@ Golive 0

7:38 PM
12/8/2024 -

v 'f,:? Dashboard X + — o X

&« > C % canvas.semo.edu % >3t e ©® s 3 S &8
e @@ M [Products x HE - o X
&< O A Not secure | 44.202.9.200:8000/store/index.html Q & 9
Company Welcome, KySchwartz!
Logo : 0
Logout SignUp Cart

Products

|
Apple Banana Laptop Computer
Price: $0.50 Price: $0.25 Price: $325.00
Quantity in stock: 83 Quantity in stock: 119 Quantity in stock: 42

I
Add To Cart Add To Cart Add To Cart

Studio

53°F 'y s = 7:41 PM
’—?Lightrain == Q Search ﬁ}i E %2 & o ﬁ (7] 9 U q ’_0 NS DD g B

v ¥ Dashboard X + - ol X

<« c °s canvas.semo.edu % e ® s & &, ﬁ

S @ O [Products x + - O X
<~ G A Notsecure | 44.202.9.200:8000/store/index html Q = - O
A
(Y] |i|:| D @ Welcome </> Elements Console ';'O% Sources &> Network <@ Performance Memory a Application + @ X
Company Welcome, KySchwartzl — S ©
Logo . o <!DOCTYPE html> Styles Computed Layout Event Listeners 4
Account Logout SignUp Cart <html lang="en"> scroll
» <head> «= </head> = Filter thov s +, B A
¥ <body> element.style {
PrOd ucts P <header> « </header> | flex
Dashboard - <mains }
<h1>Products</hls @media (max-width: 768px) { style.css:154
o P <section class="product-grid"> . </section> grid -product-grid {
— . grid-template-columns: 1fr;
Courses </main> }
P <footer> .. </footer> I
<script src="/static/script.js"»></script> N
.p " . -p] - ’ . .product-grid { style.css:56
<script src="/static/script_index.js"></script>) .. aeo
</body> display: grid; sos
rid—template—cotumrsi—repeat{S—3fr
</html> gap: b 28px;
padding: » 2@px;
justify-items: center;
}
section { user agent stylesheet
Apple sisptayi—btocks
PP unicode-bidi: isolate;
Price: $0.50 }
o Inherited from body
Quantity in stock: 83
body { style.css:1
font-family: Arial, sans-serif;
H N H
8;
}
{margn -
; border - :
4 html body main section.product-grid ' { padding 20 ' v
5 g Console lssues -+ &
L) K -
= o - it R -~ ecge Ja/202s
= . . s oy ~ =y ¢
~% Light rain mm Q Search B = o * = ¥ @ O S WD 0 B

;s Dashboard X + =] X
&€ = C % canvassemo.edu % e ® s & K2 G :

S @@ O [O car x WSS - O X

<~ G A Notsecure | 44.202.9.200:8000/store/cart.htm|

Company .
Logo Logout Sign Up

Account

Dashboard Cart
Apple gy Subtotal: $511.75
Courses Shipping: $10
.&& Product ID: 1
_ Total: $521.75
Groups Quantity: 2
-
o Unit Price: $0.50
1. B
Calendar
Banana $0.75
®. 4 ProductiD:2
o Quantity: 3

Unit Price: $0.25

Remove

.

Laptop Computer $325
g Product ID: 3
- Quantity: 1
Unit Price: $325.00
\ H: B
A s3F =m .0 « =) - 7:43 PM
—? Light rain mm Q Search Bt Is & ﬁ (7] g U @ NS DD o B

v ¥ Dashboard x +

<« C 25 canvassemo.edu I+ ¢ @ ®© s & y &
Pa | S @ O Do x + - g
a" <~ G A Notsecure | 44.202.9.200:8000/store/productdetails.html?id=1 7 = 9

Company .
Account Logo Logout Sign Up
)
i - Apple Price: $0.50

Courses

Product ID: 1 Quantity in stock: 83

: :
Add To Cart

A crisp, juicy, and sweet treat, packed with vitamins and antioxidants. Perfect for a healthy
shack or a delicious addition to your favorite recipes.

S8

Groups

Calendar

© Company Name

7:44 PM
Q

;_?53°F Bm Q Search i B Lo B R : | (7 e U @ NS RDD e

Light rain

v ¥ Dashboard X + - ol X

& c °3 canvas.semo.edu ¥ % @ ® s & g &

N v @ Select product to change | Djar X -+ — O X
Jﬁu '

. N .

e € C A Notsecure 44.202.9.200:8000/admin/store/product/ A ¢ e ®©® s & & &

WELCOME, ADMIN. VIEW SITE / CHANGE PASSWCRD / LOG OUT (

Django administration

Account
Home > Store > Products

Start typing to filter...
Dashboard YPIng
Select product to change ADD PRODUCT +

AUTHENTICATION AND AUTHORIZATION

Courses Groups *+ Add Action: | —-—e--mes v| Go 0of4selected
S8 O propbuct
O smartphone
—* Cart items + Add
O Laptop Computer
Calendar Carts + Add
O Banana
Categorys + Add
O Apple
« Order items + Add
4 products
Orders *+ Add .
Payments + Add
Product categorys + Add
Products + Add
Users + Add

F = Qs P E L N mab S0

v ¥ Dashboard X + - ol X

& c °3 canvas.semo.edu ¥ % @ ® s & g &

N v @ Add product | Django site adm X -+ — O X
Jﬁ '

. N .

e € C A Notsecure 44.202.9.200:8000/admin/store/product/add/ A ¢ e ®©® s & & &

WELCOME, ADMIN. VIEW SITE / CHANGE PASSWORD / LOG OUT (P

Django administration

Account
Home > Store > Products > Add product

Dashboard Start typing to filter...

Add product

Courses Groups + Add Title: [|

S8

Description:
Groups STORE P

—* Cart items + Add
Calendar Carts + Add
Categorys + Add
Order items + Add
€ Orders *+ Add #
+

Payments Add Price:
Product categorys + Add

Products + Add Stock:

Users + Add -)
Image: Choose File | No file chosen

SAVE Save and add another Save and continue editing -

F = Qs P E LR N mab S0

Evaluation and
Future Work

The final product of our project, the E-Commerce Application eKart, is a
robust and scalable platform designed to simplify online shopping for users
and support small businesses. The platform incorporates key features that
provide a seamless shopping experience while ensuring user data security

Key Functionalities Developed:

« Users can register, log in, and securely manage their accounts.

« Admins can add, update, and delete products, including managing stock
and pricing.

« A fully functional cart allows users to add, update, and remove items, with
total prices calculated dynamically.

» Users can place and track orders.

« The platform supports responsive web design, ensuring compatibility
across devices.

« The backend is secured with JWT-based authentication, providing role-
based access control for admin features.

« A user-friendly interface ensures ease of navigation and accessibility for
users of varying technical expertise.

The e-commerce platform
successfully meets the
foundational requirements for a
secure and scalable online store.

It provides essential features like
user management, product
browsing, cart operations, and
order placement, all integrated
into a cohesive and responsive
system.

While the project has achieved its
core objectives, certain areas
require further attention

Enhanced User
Experience

Accessibility
Enhancements

Mobile
Optimization

Payment
Integration

Advanced
Search and

Filtering

Future Improvements

Looking forward, several enhancements can extend the platform’s capabilities:

Improving Scalability

Adding Features

Enhanced Security

Automated Workflows

Integration with Third-
Party Tools

« Implement load balancing and caching
mechanisms to handle higher user traffic.

« Explore cloud hosting solutions for greater
flexibility and reliability.

« Include wish lists, product reviews, and user
notifications.

« Develop analytics dashboards for admins to
track sales, inventory, and user engagement.

Introduce two-factor authentication for users and
advanced encryption methods for sensitive data.

Automate inventory updates and email
notifications for order status.

« Connect with social media platforms for user
authentication (e.g., OAuth?2).

« Incorporate shipping and delivery tracking APIs
for a complete order fulfillment cycle.

Thank You!

	Slide 1: E-commerce WebDevelopment
	Slide 2: Project Analysis
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Alternative Solution Analysis
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Project Design
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Development
	Slide 22: Backend Development
	Slide 23: Backend Development
	Slide 24: Backend Development
	Slide 25: Backend Development
	Slide 26: Frontend Development
	Slide 27: Frontend Development
	Slide 28: Frontend Development GET and POST requests examples
	Slide 29: Frontend Development
	Slide 30: Frontend Development: User Authentication
	Slide 31: Frontend Development
	Slide 32: Frontend Development
	Slide 33: Frontend Development
	Slide 34: Development Questions?
	Slide 35: Integration and testing
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Implementation
	Slide 42: Setting Up the EC2 Instance
	Slide 43: Configuring the Django Environment
	Slide 44: Creating a Superuser and Populating the Database
	Slide 45
	Slide 46: Configuring the Database
	Slide 47: Setting Up Gunicorn
	Slide 48: Setting Up NGINX
	Slide 49: Testing and Finalization
	Slide 50
	Slide 51: Code and Webpage Screenshots
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Evaluation and Future Work
	Slide 63
	Slide 64
	Slide 65
	Slide 66

