CS505 - Final Project

Binary Classification of Mushrooms

Wiley Hartzog, Sean Durbin, Colton Starkey, Kyle Schwartz, Thabo Adams

~ -

Introduction - background

Mushrooms are an extremely common fungus with over
14,000 unique species across the globe.

While mushrooms are a very common food, that much
biodiversity there are many that are poisonous as well.

Much of the illness caused by mushrooms is from those
picked in the wild that people might not be educated on.

This leads us to the project...

Introduction - task at hand

Purpose of project is to classity mushrooms as either
poisonous or edible given datasets

Binary classification

Done using machine learning models

Datasets provided via .csv files.

Introduction - business context

Beneficial to someone that is getting into picking wild
mushrooms or just wants some general guidance on what to

look for in certain types of mushrooms.
for liability purposes since this is not 100% accurate would not
want someone to put their own live in the hands of our model

and fully trust it.
Still could be used in research and education.

Dataset Overview

Sourced from Kaggle

Contains over 1,000,000 rows of data
20+ columns of attributes

All the data in each column besides id of each mushroom was
stored as either a float or character/string, or boolean.

Characters like “a" for autumn and “w"” for winter were used
for the season attribute as an example

Displaying
Data Files

Data Preprocessing

The data could not be simply uses as provided and get accurate
results.

First began by using pandas to pull in data from the files we
downloaded locally.

Category columns were identified, and data was mapped in and
encoded as integer values.

Data was split into training and test but also dropped the less
important columns and normalized

Null attributes removed via imputation.

Data Preprocessing - code explanation

Model Development - XGBoost

Model we selected in the proposal document.

Hypothesized to be the most accurate.

XGBoost algorithms automatically preprocess the data internally after it transitioned to a DMatrix object.
Utilizes gradient boosting to minimize loss function, and builds decision trees as base models.

A moderately complex model with the max depth of each tree being set to 6.

Uses a moderate learning rate of 0.1.

Optimized for binary classification.

Uses an AUC metric to access model performance.

Set to 100 boosting rounds.

Automatically stops training to prevent overfitting if validation metric doesn't improve after 10 rounds.

Model Development
- XGBoost

Prepare data for XGBoost
dtrain = xgb.DMatrix(X train, label=Y train)
dval = xgb.DMatrix(X val, label=Y val)
dtest = xgb.DMatrix(X test, label=Y test)
Define XGBoost model
params = {
‘max_depth': 6,
‘eta': 0.1,
‘objective’: 'binary:logistic’,
‘eval metric': 'auc’

Train the XGBoost model
print("Training XGBoost model...
bst = xgb.train(
params=params,
dtrain=dtrain,
num_boost round=168,
evals=[(dtrain, 'train’), (dval, ‘'validation')],
early stopping rounds=10,
verbose eval=True

print("\nXGBoost model training complete.™)

’,
P
S

(I
“‘ '..
"
e8! e,

‘||..'
[|
“l l,‘

+

Model Development - logistic regression

Second model type chosen for experiments.
Less hyperparameters to define compared to XGBoost.

Data preprocessing such as handling missing values and
mapping non-number values to an integer value was required
for this model.

Makes predictions based a probabilistic framework.

The model was set to train for 1000 iterations.

Model Development
- logistic regression

print("Training Logistic Regression model...")
1r = LogisticRegression(max iter=1000)
lr.fit(X train, Y_train)

Confirm training completion
print("\nLogistic Regression model training complete.™)

Model Development - random forest
classifier

Third and final model type chosen for experiments.

Only used one hyperparameter.

Data preprocessing such as handling missing values and mapping
non-number values to an integer value was required for this model.

Data is split based on features at each node.

Combines the predictions from multiple trees to improve
performance and reduce overfitting.

Set to create 100 decision trees.

Model Development -
random forest
classifier

print("Training Random Forest model...")

print("This will take about 5.5 minutes.™)

rf = RandomForestClassifier(n_estimators=100) # Set the number of trees
rf.fit(X _train, Y _train)

print("\nRandom Forest model training complete.™)

Performance Evaluation - metrics

Multiple metrics used to gauge performance:

Accuracy: Percentage of total predictions made that were correct.
Precision: measured by true positives / (true positives + false positives)
Recall: measures by true positives / (true positives + false negatives)

F1 Score: used in binary classification and is derived from both precision and recall. Generally considered a better

metric than accuracy.

ROC-AUC: stands for receiver operator characteristic area under curve. Represents the probability of a model given

randomly picked positive and negative examples that it will rank positive higher than negative

Performance Evaluation - Results

Best performance is Random Forest Classitier

Worst performance is logistic regression

Test Results Comparison with Detailed Metrics:

Model Accuracy Precision Recall F1 Score ROC-AUC
%) XGBoost ©.981167 0.98 0.98 0.98 ©0.994639
1 Logistic Regression 0.630299 0.63 0.63 0.63 ©0.683139
2 Random Forest 0.990122 0.99 0.99 9.99 0.995617

Confusion Matrix

Random forest model confusion matrix
The top left is true positive.

TOp I'ight iS false negative. Confusion Matrix - Random Forest

Bottom left 1s false negative. 400000

. . . 350000
Bottom right is true negative.

Accurately predicted 349,033 true edible

300000

250000

200000

a
=
m
v
=
'_

Accurately predicted 422,507 true poisonous

Formula to calculate accuracy: 150000
Accuracy = (TP + TN) / (TP + TN + FP + FN) Poisonous 22307 100000
Accuracy = (349033 + 422507) / (349033 + 422507 + 4146 + 3551) 50000

The matrix depicts a 99.5% accuracy.

Edible Poisonous
Predicted label

Feature Importance Analysis

Most Influential Features

Stem Wldth Random Forest Feature Importance
Gill Attachment
Cap Surface

stem-width
gill-attachment
cap-surface

stem-height

How Features Were Analyzed

Random Forest ranks features based on
their impact on decisions.

Importance derived from decision tree
splits.

gill-spacing

v
g
3
i
o
]
o

cap-diameter
gill-color
stem-color
cap-color

does-bruise-or-bleed

Pra Ctical InSig hts . 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Feature Importance

Highlights traits that separate poisonous
mushrooms from edible ones.

Model Interpretation

How Random Forest Works
Combines predictions from multiple decision trees.

Each tree trains on random subsets of data and
features.

Uses majority voting or averaging for final
classification.
Decision-Making Process

DECISION TREE-1 DECISI{IN TREE-1 DECISI{!N TREE-1

Each tree predicts based on individual thresholds
(e.g., stem width, gill attachment).

RESULT=-1 RESULT-2 RESULT-MN

Aggregates predictions from all trees for a final l
result.
\— —I

Advantages

Robust against overfitting due to randomization.

Transparent and interpretable with features
importance metrics.

Problem Solving Steps

Key Issue:

Model misclassified 4,146 poisonous mushrooms as edible (<1%).

How We Can Improve Accuracy:
Collaborate with experts: Validate data and identify overlooked patterns.
Add new data points: Use environmental factors like soil type or region.

Safety First:

Focus on reducing false negatives to prioritize user safety, even if it slightly
increases false positives.

Projected Business Outcomes

Improved Safety:
Builds trust and prevents dangerous misclassifications.

Stronger Customer Retention:
Reliable results keep users engaged and reduce churn.

Educational Impact:
Helps educate users and communities on safe mushroom identification.

Competitive Advantage:
Focus on safety and reliability differentiates the tool from competitors.

Future Growth:

Opportunity to partner with educators, conservation groups, and others to expand the
tool's reach.

Limitations

Our model was limited by the species of mushrooms included
in the UCI dataset

Each characteristic is prone to the interpretation of whoever
entered the feature data

This tool must be cross-referenced by somebody with
mushroom identification skills to be used safely
This could have legal consequences that must be considered

This also makes the tool less useful for the average user in its current
form

Impacts

Not every mushroom is described in the dataset and therefore
cannot be assumed to be accurately classified by our model

Tabular data, although great for training data with our model,
is limited in usefulness. Each entry must be classitied and the
data must be manually entered for each key feature

Future Work

The key to future works is image analysis:
This would greatly expand the generalizability of the model

Beyond binary classification, image analysis could open the door for
species identification as well

A hybrid approach of tabular and image analysis could prove to be a more
complete method

Image analysis could allow the development of web and mobile
applications devoted to mushroom identification

Incorporating image data would require vastly more complicated
models, and it would likely sacrifice efficiency and a slight amount
of accuracy.

Improvements

The first and most impactful improvement would be better

data and more of it.
Incorporating more species of mushrooms and more features would
create a more generalizable model

This additional data could be crowdsourced from mycology groups
willing to share expert identification data

More experimentation of hybrid model approaches could
allow improvement either in efficiency or accuracy, although

our results are quite high in both.

Conclusion

Best Performing Model

Random forest achieved 99%

accuracy and was cross-validated.

Insights from Feature
Importance

Stem width, gill attachment, and
cap surface were the most
influential traits in determining
toxicity.

Limitations

A small percentage of false negatives
(poisonous classified as edible).

Requires detailed feature input which
limits it's use for non-technical users.

Future Potential

Integration of image analysis for
broader accessibility.

Relevant applications in education,
food safety, and research.

References

Colorado State University. (2024, June 19). Mushrooms. Food Source Information.
GeeksforGeeks. (2024b, June 20). Logistic Regression in Machine Learning. GeeksforGeeks.
GeeksforGeeks. (2024a, January 31). Random Forest classifier using Scikit-learn. GeeksforGeeks.

Google. (n.d.). Classification: Roc and AUC | machine learning | google for developers. Google.

Reade, W., & Chow, A. (2024). Binary prediction of poisonous mushrooms. Kaggle.

https://www.chhs.colostate.edu/fsi/food-articles/produce/mushrooms/#:~:text=There%20are%2C%20however%2C%20many%20morphological,on%20some%20type%20of%20substrate
https://www.chhs.colostate.edu/fsi/food-articles/produce/mushrooms/#:~:text=There%20are%2C%20however%2C%20many%20morphological,on%20some%20type%20of%20substrate
https://www.chhs.colostate.edu/fsi/food-articles/produce/mushrooms/#:~:text=There%20are%2C%20however%2C%20many%20morphological,on%20some%20type%20of%20substrate
https://www.geeksforgeeks.org/understanding-logistic-regression/
https://www.geeksforgeeks.org/understanding-logistic-regression/
https://www.geeksforgeeks.org/understanding-logistic-regression/
https://www.geeksforgeeks.org/understanding-logistic-regression/
https://www.geeksforgeeks.org/understanding-logistic-regression/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://www.geeksforgeeks.org/random-forest-classifier-using-scikit-learn/
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#:~:text=The%20area%20under%20the%20ROC,random%20positive%20and%20negative%20example
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#:~:text=The%20area%20under%20the%20ROC,random%20positive%20and%20negative%20example
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#:~:text=The%20area%20under%20the%20ROC,random%20positive%20and%20negative%20example
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#:~:text=The%20area%20under%20the%20ROC,random%20positive%20and%20negative%20example
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#:~:text=The%20area%20under%20the%20ROC,random%20positive%20and%20negative%20example
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#:~:text=The%20area%20under%20the%20ROC,random%20positive%20and%20negative%20example
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#:~:text=The%20area%20under%20the%20ROC,random%20positive%20and%20negative%20example
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#:~:text=The%20area%20under%20the%20ROC,random%20positive%20and%20negative%20example
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc#:~:text=The%20area%20under%20the%20ROC,random%20positive%20and%20negative%20example
https://kaggle.com/competitions/playground-series-s4e8
https://kaggle.com/competitions/playground-series-s4e8
https://kaggle.com/competitions/playground-series-s4e8
https://kaggle.com/competitions/playground-series-s4e8
https://kaggle.com/competitions/playground-series-s4e8

	Slide 1: CS505 – Final Project Binary Classification of Mushrooms
	Slide 2: Introduction - background
	Slide 3: Introduction – task at hand
	Slide 4: Introduction – business context
	Slide 5: Dataset Overview
	Slide 6: Displaying Data Files
	Slide 7: Data Preprocessing
	Slide 8: Data Preprocessing – code explanation
	Slide 9: Model Development - XGBoost
	Slide 10: Model Development - XGBoost
	Slide 11: Model Development – XGBoost – tree diagram
	Slide 12: Model Development - logistic regression
	Slide 13: Model Development – logistic regression
	Slide 14: Model Development - random forest classifier
	Slide 15: Model Development – random forest classifier
	Slide 16: Performance Evaluation - metrics
	Slide 17: Performance Evaluation - Results
	Slide 18: Confusion Matrix
	Slide 19: Feature Importance Analysis
	Slide 20: Model Interpretation
	Slide 21: Problem Solving Steps
	Slide 22: Projected Business Outcomes
	Slide 23: Limitations
	Slide 24: Impacts
	Slide 25: Future Work
	Slide 26: Improvements
	Slide 27: Conclusion
	Slide 28: References

